Exponential Kummer Coverings and Determinants of Hypergeometric Functions

Tomohide TERASOMA

Tokyo Metropolitan University

§1. Introduction.

In the papers of Aomoto [A1][A2], he discovered a generalization of hypergeometric function of Appell's hypergeometric function and studied the monodromy of the differential equation defined by this Aomoto-Gel'fand hypergeometric function. This generalized hypergeometric function is defined as an integral of differential form on some topological cycle. Recently, this integral is known to be closely related to a period analogue of l-adic representation of profinite braid group or generalized braid group. The explicit formula for the determinant of arithmetic Magnus representation is given in [O-T]. In this paper we treat the period analog of the above paper.

We explain the results of this paper. Let n be an integer such that $n \geq 3, \lambda_{1}, \cdots, \lambda_{n}$ and $\alpha_{1}, \cdots, \alpha_{n}$ be real numbers such that $\lambda_{1}<\cdots<\lambda_{n}$ and $\alpha_{i}>0$ respectively. Let $a_{i j}$ ($1 \leq i, j \leq n-1$) be a singular integral of Jordan-Pochhammer type defined by

$$
a_{i j}=\int_{\lambda_{i}}^{\lambda_{i+1}} \prod_{p=1}^{i}\left(x-\lambda_{p}\right)^{\alpha_{p}-1} \prod_{p=i+1}^{n}\left(\lambda_{p}-x\right)^{\alpha_{p}-1} x^{j-1} d x .
$$

Theorem 1. The determinant of $A=\left(a_{i j}\right)_{1 \leq i, j \leq n-1}$ is given by

$$
\operatorname{det} A=\prod_{i=1}^{n}\left\{(-1)^{i-1} \prod_{j \neq i}\left(\lambda_{j}-\lambda_{i}\right)\right\}^{\alpha_{i}} \prod_{1 \leq i<j \leq n}\left(\lambda_{j}-\lambda_{i}\right)^{-1} \cdot \frac{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{n}\right)}{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n}\right)} .
$$

This theorem is proved by Varchenko [Var]. In this paper, we give another direct proof of this determinant theorem. For the intermediate exterior product for Appell's hypergeometric functions, we have the following theorem.

Theorem 2. For an integer r such that $1 \leq r \leq n-1$, and sets of indices

$$
I \in\left\{\left(i_{1}, \cdots, i_{r}\right) \mid 0 \leq i_{1}<\cdots<i_{r} \leq n-2\right\}, \quad J \in\left\{\left(j_{1}, \cdots, j_{r}\right) \mid 0 \leq j_{1}<\cdots<j_{r} \leq n-2\right\},
$$

we define $A_{I, J}$ as the (I, J)-minor of the matrix $\left(a_{i, j}\right)_{i \in I, j \in J}$ defined as above. Let $\bar{\Omega}_{I}$ be a differential form;

