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1. Introduction.

This paper is concemed with the strong ergodic theorems for commutative
semigroups.

Let $C$ be a nonempty closed convex subset of a real Banach space $X$ . A mapping
$T:C\rightarrow C$ is said to be asymptotically nonexpansive if for each $n\geq 1$ ,

(1.1) $\Vert T^{n}x-T^{n}y\Vert\leq(1+\alpha_{n})\Vert x-y\Vert$ for all $x,$ $y\in C$ ,

where $\lim_{n\rightarrow\infty}\alpha_{n}=0$ . In particular if $\alpha_{n}=0$ for all $n\geq 1,$ $T$ is said to be nonexpansive. We
denote by $F(T)$ the set of fixed points of a mapping $T$ from $C$ into itself. Let
$\mathcal{T}=\{T(t) : t\geq 0\}$ be a family ofmappings from $C$ into itself. $\mathcal{T}$ is called an asymptotically
nonexpansive semigroup on $C$ if $T(t+s)=T(t)T(s)$ for every $t,$ $s\geq 0$, and there exists a
function $\alpha(\cdot):R^{+}\rightarrow R^{+}$ with $\lim_{t\rightarrow\infty}\alpha(t)=0$ such that

(1.2) $\Vert T(t)x-T(t)y\Vert\leq(1+\alpha(t))\Vert x-y\Vert$

for all $x,$ $y\in C$ and $t\geq 0$ . In particular, if $\alpha(t)=0$ for all $t\geq 0$ , then $\mathcal{T}$ is called a
nonexpansive semigroup on $C$.

Baillon [2] and Bruck [3] proved the strong ergodic theorem for nonexpansive
mappings in Hilbert spaces: let $T$ be a nonexpansive mapping from $C$ into itself and
let $x\in C$ . If $F(T)$ is nonempty and $\lim_{n\rightarrow\infty}\Vert T^{n}x-T^{n+k}x\Vert$ exists uniformly in $k=$

$0,1,2,$ $\cdots$ , then $\{T^{n}x:n\geq 1\}$ is strongly almost convergent as $ n\rightarrow\infty$ to a point of
$y$ in $F(T)$, i.e.,

$\lim_{\rightarrow\infty}\frac{1}{n}\sum_{i=0}^{n-1}T^{i+k}x=y$ uniformly in $k=0,1,2,$ $\cdots$ .

The corresponding result for nonexpansive semigroups is the following:
let $\{T(t);t\geq 0\}$ be a nonexpansive semigroup on C. If $\bigcap_{t\geq 0}F(T(t))$ is nonempty and
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