On Certain Infinite Series

Masao TOYOIZUMI

Toyo University
(Communicated by K. Katase)

§0. Introduction.

The Riemann zeta function $\zeta(s)$ is defined by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}},
$$

where $n^{s}=\exp (s \log n)$ and $\log z$ denotes the principal branch of $\log z$. The series is locally uniformly convergent for $\operatorname{Re}(s)>1$, so that $\zeta(s)$ represents a regular function of s there. It is known that $\zeta(s)$ possesses an analytic continuation into the whole s-plane which is regular except for a simple pole at $s=1$ with residue 1 and that $\zeta(s)$ has the Laurent expansion at $s=1$ of the form

$$
\begin{equation*}
\zeta(s)=\frac{1}{s-1}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \gamma(n)(s-1)^{n}, \tag{1}
\end{equation*}
$$

where

$$
\gamma(n)=\lim _{N \rightarrow \infty}\left\{\sum_{k=1}^{N} \frac{\log ^{n} k}{k}-\frac{\log ^{n+1} N}{n+1}\right\}
$$

for all values of n. In particular,

$$
\begin{equation*}
\gamma=\gamma(0)=\lim _{N \rightarrow \infty}\left\{\sum_{k=1}^{N} \frac{1}{k}-\log N\right\} \tag{2}
\end{equation*}
$$

is called the Euler constant. The above expansion has been discovered independently by Briggs and Chowla [1] and a lot of mathematicians. It is also known that

$$
\begin{equation*}
\zeta(0)=-\frac{1}{2}, \quad \zeta(-2 m)=0 \quad \text { and } \quad \zeta(1-2 m)=-\frac{B_{2 m}}{2 m} \tag{3}
\end{equation*}
$$

