Tokyo J. Math. Vol. 16, No. 2, 1993

On Certain Infinite Series

Masao TOYOIZUMI

Toyo University (Communicated by K. Katase)

§0. Introduction.

The Riemann zeta function $\zeta(s)$ is defined by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s},$$

where $n^s = \exp(s \log n)$ and $\log z$ denotes the principal branch of $\log z$. The series is locally uniformly convergent for $\operatorname{Re}(s) > 1$, so that $\zeta(s)$ represents a regular function of s there. It is known that $\zeta(s)$ possesses an analytic continuation into the whole s-plane which is regular except for a simple pole at s=1 with residue 1 and that $\zeta(s)$ has the Laurent expansion at s=1 of the form

(1)
$$\zeta(s) = \frac{1}{s-1} + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \gamma(n)(s-1)^n,$$

where

$$\gamma(n) = \lim_{N \to \infty} \left\{ \sum_{k=1}^{N} \frac{\log^{n} k}{k} - \frac{\log^{n+1} N}{n+1} \right\}$$

for all values of n. In particular,

(2)
$$\gamma = \gamma(0) = \lim_{N \to \infty} \left\{ \sum_{k=1}^{N} \frac{1}{k} - \log N \right\}$$

is called the Euler constant. The above expansion has been discovered independently by Briggs and Chowla [1] and a lot of mathematicians. It is also known that

(3)
$$\zeta(0) = -\frac{1}{2}, \quad \zeta(-2m) = 0 \text{ and } \zeta(1-2m) = -\frac{B_{2m}}{2m}$$

Received May 20, 1992