Токуо Ј. Матн. Vol. 17, No. 1, 1994

Some Remarks on the Characterization of the Poisson Kernels for the Hyperbolic Spaces

Shigeru WATANABE

Sophia University (Communicated by T. Nagano)

Introduction.

Let G be a classical connected simple Lie group of real rank 1: i.e. G is one of the groups $SO_0(1, n)$, SU(1, n) and Sp(1, n) corresponding to the fields **R**, **C** and **H** respectively. Let G = KAN be an Iwasawa decompositon and M be the centralizer of A in K. Denoting by F the field corresponding to the group G, then G/K is the classical hyperbolic space, i.e. the unit ball in F^n (denoted by $B(F^n)$) and it's Martin boundary K/M is the unit sphere in F^n (denoted by $S(F^n)$). The action of G on $B(F^n)$ and $S(F^n)$ is concretely given as follows: for $x = {}^t(x_1, \dots, x_n) \in F^n$ and $g = (g_{pq})_{0 \le p,q \le n} \in G$, we define

$$x'=gx$$
,

where $x' = {}^{t}(x'_{1}, \cdots, x'_{n})$, with

$$x'_{p} = (g_{p0} + \sum_{q=1}^{n} g_{pq} x_{q})(g_{00} + \sum_{q=1}^{n} g_{0q} x_{q})^{-1}, \qquad 1 \le p \le n.$$

And the identifications $G/K \cong B(F^n)$ and $K/M \cong S(F^n)$ are given by

$$G/K \cong B(F^n)$$
; $gK \mapsto gO$,
 $K/M \cong S(F^n)$; $kM \mapsto ke_1$,

where O is the origin of F^n and $e_1 = {}^t(1, 0, \dots, 0) \in S(F^n)$.

We now denote by D the Laplace-Beltrami operator on $G/K \cong B(F^n)$. The Poisson kernel $P: G/K \times K/M \to R$ is given as follows:

$$P(gK, kM) = \left(\frac{1-|x|^2}{|1-t\bar{x}\cdot b|^2}\right)^{\rho},$$

Received December 22, 1992