Irregularity of Quintic Surfaces of General Type

Yumiko UMEZU
Toho University
(Communicated by M. Sakai)

Introduction.

Let X be a hypersurface in P^{3} of degree d defined over an algebraically closed field k of characteristic 0 . For $d \leq 4$, singularities on X and properties of the resolution \tilde{X} of X have been studied. For example, if X is normal, then it is known that \tilde{X} is birationally equivalent to one of the following surfaces:
$d=1,2$: a rational surface;
$d=3$: a rational surface or an elliptic ruled surface;
$d=4$: a $K 3$ surface, a rational surface, an elliptic ruled surface or a ruled surface over a curve of genus 3.
(The case of $d=1$ or 2 is clear. For $d=3$, see Hidaka-Watanabe [3], and for $d=4$, Umezu [8]. The argument in [8]. can also be applied to the case of $d \leq 3$.)

On the other hand, not many things are known about the case of higher d. The purpose of this paper is to prove the following

Main Theorem. Let \dot{X} be a normal quintic surface and \tilde{X} denote its resolution. If \tilde{X} is of general type, then its irregularity $q(\tilde{X})$ vanishes.

Remark. As we see in the following example, this result is not available for $d \geq 6$.
Example (Zariski). Let $\left(X_{0}: X_{1}: X_{2}: X_{3}\right)$ be homogeneous coordinates of P^{3} and put

$$
X=\left\{X_{3}^{6}-\left(F\left(X_{0}, X_{1}, X_{2}\right)^{2}+G\left(X_{0}, X_{1}, X_{2}\right)^{3}\right)=0\right\}
$$

where F and G are homogeneous polynomials of degree 3 and 2 respectively. Then the irregularity of a resolution \tilde{X} of X is positive ([13]). The singularity of X corresponds to the singularity of the curve $C=\left\{F\left(X_{0}, X_{1}, X_{2}\right)^{2}+G\left(X_{0}, X_{1}, X_{2}\right)^{3}=0\right\} \subset\left\{X_{3}=0\right\} \simeq P^{2}$. If F and G are general, the singularity of C is at the six points of $\left\{F\left(X_{0}, X_{1}, X_{2}\right)=0\right\} \cap$ $\left\{G\left(X_{0}, X_{1}, X_{2}\right)=0\right\}$ and each corresponding singular point on X is defined locally by

[^0]
[^0]: Received November 14, 1992
 Revised April 5, 1993

