Tokyo J. Math. Vol. 17, No. 1, 1994

Irregularity of Quintic Surfaces of General Type

Yumiko UMEZU

Toho University (Communicated by M. Sakai)

Introduction.

Let X be a hypersurface in \mathbb{P}^3 of degree d defined over an algebraically closed field k of characteristic 0. For $d \leq 4$, singularities on X and properties of the resolution \tilde{X} of X have been studied. For example, if X is normal, then it is known that \tilde{X} is birationally equivalent to one of the following surfaces:

d=1, 2: a rational surface;

d=3: a rational surface or an elliptic ruled surface;

d=4: a K3 surface, a rational surface, an elliptic ruled surface or a ruled surface over a curve of genus 3.

(The case of d=1 or 2 is clear. For d=3, see Hidaka-Watanabe [3], and for d=4, Umezu [8]. The argument in [8].can also be applied to the case of $d \le 3$.)

On the other hand, not many things are known about the case of higher d. The purpose of this paper is to prove the following

MAIN THEOREM. Let \dot{X} be a normal quintic surface and \tilde{X} denote its resolution. If \tilde{X} is of general type, then its irregularity $q(\tilde{X})$ vanishes.

REMARK. As we see in the following example, this result is not available for $d \ge 6$.

EXAMPLE (Zariski). Let $(X_0: X_1: X_2: X_3)$ be homogeneous coordinates of P^3 and put

$$X = \{X_3^6 - (F(X_0, X_1, X_2)^2 + G(X_0, X_1, X_2)^3) = 0\}$$

where F and G are homogeneous polynomials of degree 3 and 2 respectively. Then the irregularity of a resolution \tilde{X} of X is positive ([13]). The singularity of X corresponds to the singularity of the curve $C = \{F(X_0, X_1, X_2)^2 + G(X_0, X_1, X_2)^3 = 0\} \subset \{X_3 = 0\} \simeq P^2$. If F and G are general, the singularity of C is at the six points of $\{F(X_0, X_1, X_2) = 0\} \cap \{G(X_0, X_1, X_2) = 0\}$ and each corresponding singular point on X is defined locally by

Received November 14, 1992 Revised April 5, 1993