Correction to: A Characterization of the Poisson Kernel Associated with $\boldsymbol{S U}(1, n)$

(Tokyo Journal of Mathematics, Vol. 11, No. 1, 1988, pp. 37-55)

Takeshi KAWAZOE and Taoufiq TAHANI

Keio University and Université de Lille I

In Corollary 6 (iii), which appears in page 45 of the paper above, the numerator in the right hand side of the second equation should be equal to 4 instead of 2 . As a consequence the numerators $2\left(2 n^{2}-9 n+1\right)$ and $4 n\left(6 n^{2}+5 n-5\right)$ in (21) must be changed into $-2\left(n^{2}+3 n+2\right)$ and $8 n\left(3 n^{2}+n-1\right)$ respectively, and then the equation below (24) into $A=\bar{A}$. Therefore, the argument in p. 51 that deduces (8 d) collapses. We replace it as follows.

Let F be a real valued, C^{2} function on G / K satisfying $F(0)=1$ and (2a), (2b), (2c) in Lemma 1. We here put $[F](g)=\int_{M} f(m g) d m(g \in G)$ and $R=F-[F]$. Then $[F]$ satisfies $[F](0)=1$, (2a) and (2c), and R satisfies $R(0)=0$, (2a) and $\left(\partial R / \partial \zeta_{i}\right)(0)=0(1 \leq i \leq n)$. Especially, if we denote by $[F]=\sum_{N=0}^{\infty}[F]_{N}$ (resp. $R=\sum_{N=0}^{\infty} R_{N}$) a homogeneous expansion of $[F]$ (resp. R) with respect to $\zeta_{1}, \bar{\zeta}_{1}, \zeta_{2}, \bar{\zeta}_{2}, \cdots, \zeta_{n}$, $\bar{\zeta}_{n}$, we see that

$$
\begin{equation*}
[F]_{0}=1, \quad[F]_{1}=n\left(\zeta_{1}+\bar{\zeta}_{1}\right), \tag{1a}
\end{equation*}
$$

$$
\begin{equation*}
R_{0}=R_{1}=0 \tag{1b}
\end{equation*}
$$

Since $P(\zeta)=P\left(\zeta, e_{1}\right)$ and $[F]$ are M-invariant eigenfunctions of D, it follows from Proposition 7 that they have expansions of the forms:

$$
\begin{align*}
& P(\zeta)=\sum_{p, q \geq 0} P_{p q}(r) \phi_{p q}(\dot{\zeta})=\sum_{p, q \geq 0} Q_{p q}^{0}(r) \zeta_{1}^{p} \bar{\zeta}_{1}^{q}, \tag{2a}\\
& {[F](\zeta)=\sum_{p, q \geq 0} C_{p q} P_{p q}(r) \phi_{p q}(\dot{\zeta})=\sum_{p, q \geq 0} Q_{p q}(r) \zeta_{1}^{p} \bar{\zeta}_{1}^{q},} \tag{2b}
\end{align*}
$$

where $r^{2}=|\zeta|^{2}, \dot{\zeta}=\zeta / r, C_{p q} \in C$ and $\phi_{p q}$ is a spherical harmonic on K / M (see [1], p. 144). Since $\phi_{00}(\zeta)=1, \phi_{10}(\zeta)=\zeta_{1}$ and $\phi_{01}(\zeta)=\bar{\zeta}_{1}$, it follows from (1a) that

$$
\begin{align*}
& Q_{00}=Q_{00}^{0}=\left(1-r^{2}\right)^{n}, \tag{3a}\\
& Q_{10}=Q_{01}=Q_{10}^{0}=Q_{01}^{0}=\left(1-r^{2}\right)^{n} n . \tag{3b}
\end{align*}
$$

