Tokyo J. Math. Vol. 17, No. 2, 1994

Elementary Functions Based on Elliptic Curves

Keiji NISHIOKA

Keio University

1. *w*-elementary functions.

Let K be an ordinary differential field of characteristic 0 with a single differentiation D. We assume K has the field of constants C which is algebraically closed. We fix a universal extension U of K.

Let R be a differential field extension of K with finite transcendence degree over K. By $\Omega_{R/K}$ denote the R-module of all differentials of R over K and by $d_{R/K}$ the canonical derivation of R to $\Omega_{R/K}$. With D there associates an additive endomorphism D^1 of $\Omega_{R/K}$, satisfying

$$D^1(ad_{R/K}b) = D(a)d_{R/K}b + ad_{R/K}(Db), \qquad a, b \in \mathbb{R}.$$

If a and b are algebraically dependent over C then $D^1(ad_{R/K}b) = d_{R/K}(aDb)$ holds (cf. Rosenlicht [3]).

Consider an elliptic curve E defined over C which is given in the Weierstrass form

$$y^2 = 4x^3 - g_2x - g_3$$
, $g_2, g_3 \in C$, $g_2^3 - 27g_3^2 \neq 0$.

By E(R) we denote the set of all *R*-rational points on *E* and by $E(R)^*$ the set $E(R) \setminus \{O_E\}$, where O_E denotes the zero element of *E*. Let P = (1, x, y) be an *R*-rational point on *E*. We consider the following three types of peculiar differentials in $\Omega_{R/C}$

$$\omega_I(P) = \frac{d_{R/C}x}{v}$$
 and $\omega_{II}(P) = x \frac{d_{R/C}x}{v}$

For a point $Q = (1, x(Q), y(Q)) \in E(C)^*$ by $\omega_{III}(P; Q)$ we denote the differential in $\Omega_{R/C}$

$$\frac{1}{2} \frac{y+y(Q)}{x-x(Q)} \frac{d_{R/C}x}{y}.$$

In case $P \in E(C)$ we think that these differentials take the zero differential. In the case where R = C(x, y) with $x \notin C$ any differential ω in $\Omega_{R/C}$ has the unique expression

Received April 20, 1993