Elementary Functions Based on Elliptic Curves

Keiji NISHIOKA

Keio University

1. w-elementary functions.

Let K be an ordinary differential field of characteristic 0 with a single differentiation D. We assume K has the field of constants C which is algebraically closed. We fix a universal extension U of K.

Let R be a differential field extension of K with finite transcendence degree over K. By $\Omega_{R / K}$ denote the R-module of all differentials of R over K and by $d_{R / K}$ the canonical derivation of R to $\Omega_{R / K}$. With D there associates an additive endomorphism D^{1} of $\Omega_{R / K}$, satisfying

$$
D^{1}\left(a d_{\mathbf{R} / \mathbf{K}} b\right)=D(a) d_{R / \mathbf{K}} b+a d_{\mathbf{R} / \mathbf{K}}(D b), \quad a, b \in R
$$

If a and b are algebraically dependent over C then $D^{1}\left(a d_{R / K} b\right)=d_{R / K}(a D b)$ holds (cf. Rosenlicht [3]).

Consider an elliptic curve E defined over C which is given in the Weierstrass form

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}, \quad g_{2}, g_{3} \in C, \quad g_{2}^{3}-27 g_{3}^{2} \neq 0
$$

By $E(R)$ we denote the set of all R-rational points on E and by $E(R)^{*}$ the set $E(R) \backslash\left\{O_{E}\right\}$, where O_{E} denotes the zero element of E. Let $P=(1, x, y)$ be an R-rational point on E. We consider the following three types of peculiar differentials in $\Omega_{\boldsymbol{R} / \boldsymbol{C}}$

$$
\omega_{I}(P)=\frac{d_{R / C} x}{y} \quad \text { and } \quad \omega_{I I}(P)=x \frac{d_{R / C} x}{y}
$$

For a point $Q=(1, x(Q), y(Q)) \in E(C)^{*}$ by $\omega_{I I I}(P ; Q)$ we denote the differential in $\Omega_{R / C}$

$$
\frac{1}{2} \frac{y+y(Q)}{x-x(Q)} \frac{d_{R / C} x}{y}
$$

In case $P \in E(C)$ we think that these differentials take the zero differential. In the case where $R=C(x, y)$ with $x \notin C$ any differential ω in $\Omega_{R / C}$ has the unique expression

