Токуо Ј. Матн. Vol. 18, No. 1, 1995

The Hasse Norm Principle for the Maximal Real Subfields of Cyclotomic Fields

Takaaki KAGAWA

Waseda University (Communicated by Y. Shimizu)

§1. Introduction.

Let K/k be a finite extension of number fields. Let J_K be the idele group of K and $N_{K/k}$ the norm map from K to k. The group $N_{K/k}K^{\times}$ of global norms is a subgroup of finite index in $k^{\times} \cap N_{K/k}J_K$. We say that the Hasse norm principle (abbreviated to HNP) holds for K/k if $k^{\times} \cap N_{K/k}J_K = N_{K/k}K^{\times}$. We simply say that HNP holds for K if HNP holds for K/Q. The classical Hasse norm theorem asserts that if K/k is a cyclic extension, then HNP holds for K/k.

Several authors have studied the validity of HNP for abelian extensions. In [3] and [4], Gerth and Gurak independently gave necessary and sufficient conditions for HNP to hold for $Q(\zeta_m)$, where $m \neq 2 \pmod{4}$ is a positive integer and ζ_m is a primitive *m*-th root of unity. If HNP holds for $Q(\zeta_m)$, then it holds also for its maximal real subfield $Q(\zeta_m)^+$ (Proposition 1 below). However, the converse is not always true. In this paper, we will give a necessary and sufficient condition for HNP to hold for $Q(\zeta_m)^+$.

§2. Theorems.

Let $m \neq 2 \pmod{4}$ be a positive integer, and let p_1, p_2, p_3 and p_4 be distinct odd primes, and e, a_1, a_2, a_3, a_4 non-negative integers. We denote by $\left(\frac{*}{*}\right)$ the Legendre symbol and define ε_i and $\varepsilon_{i,j} \in \{0, 1\}$ by $(-1)^{\varepsilon_i} = \left(\frac{2}{p_i}\right)$ and $(-1)^{\varepsilon_{i,j}} = \left(\frac{p_j}{p_i}\right)$, respectively.

(A) Suppose that *m* has at most three distinct prime divisors and that $m \neq 2^e p_1^{a_1} p_2^{a_2}$, $e \geq 3$. In this case, we know necessary and sufficient conditions for HNP to hold for $Q(\zeta_m)$ (cf. [3, 4]).

THEOREM 1. HNP does not hold for $Q(\zeta_m)$ but does hold for $Q(\zeta_m)^+$ if and only if

Received December 15, 1993