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\S 1. Introduction.

Let $K/k$ be a finite extension of number fields. Let $J_{K}$ be the idele group of $K$ and
$N_{K/k}$ the norm map from $K$ to $k$ . The group $N_{K/k}K^{x}$ of global norms is a subgroup of
finite index in $k^{x}\cap N_{K/k}J_{K}$ . We say that the Hasse norm principle (abbreviated to HNP)

holds for K/kifk $\cap N_{K/k}J_{K}=N_{K/k}K^{x}$ . We simply say that HNP holds forK if HNP
holds for $K/Q$ . The classical Hasse norm theorem asserts that if $K/k$ is a cyclic extension,
then HNP holds for $K/k$ .

Several authors have studied the validity of HNP for abelian extensions. In [3]

and [4], Gerth and Gurak independently gave necessary and sufficient conditions for
HNP to hold for $Q(\zeta_{m})$ , where $m\not\equiv 2$ (mod4) is a positive integer and $\zeta_{m}$ is a primitive
m-th root of unity. If HNP holds for $Q(\zeta_{m})$ , then it holds also for its maximal real
subfield $Q(\zeta_{m})^{+}$ (Proposition 1 below). However, the converse is not always true. In
this paper, we will give a necessary and sufficient condition for HNP to hold for $Q(\zeta_{m})^{+}$ .

\S 2. Theorems.

Let $m\not\equiv 2$ (mod4) be a positive integer, and let $p_{1},p_{2},$ $p_{3}$ and $p_{4}$ be distinct odd

primes, and $e,$ $a_{1},$ $a_{2},$ $a_{3},$ $a_{4}$ non-negative integers. We denote by $(**-)$ the Legendre

symbol and define $\epsilon_{i}$ and $\epsilon_{i,j}(\in\{0,1\})$ by $(-1)^{\epsilon_{i}}=(\frac{2}{p_{i}})$ and $(-1)^{\epsilon_{l.j}}=(\frac{p_{j}}{p_{i}})$ , respectively.

(A) $Supposethatmhasatmostthreedistinctprimedivisorsandthatm\neq 2^{e}p_{1^{1}}^{a}p_{2^{2}}^{a}$ ,
$e\geq 3$ . In this case, we know necessary and sufficient conditions for HNP to hold for
$Q(\zeta_{m})$ (cf. [3, 4]).

THEOREM 1. HNP does not holdfor $Q(\zeta_{m})$ but does holdfor $Q(\zeta_{m})^{+}$ if and only if
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