A Note on the Scaling Limit of a Complete Open Surface

Yoshiko KUBO

Japan Women's University
(Communicated by T. Nagano)

1. Introduction.

It is interesting to study the geometric meaning of total curvature of complete open surfaces. The influence of the total curvature of a Riemannian plane on the Lebesgue measure of rays were investigated first by M. Maeda [3], [4], K. Shiga [5] and later by K. Shiohama, T. Shioya and M. Tanaka [6], etc. The author proved in [2] that a pointed Hausdorff approximation map between connected, complete and noncompact Riemannian 2-manifolds with finite total curvature has a natural continuous extension to their ideal boundaries with the Tits metrics. In view of the above results it is natural to expect that the scaling limit of such an M will be a flat cone generated by the ideal boundary $M(\infty)$ of M equipped with the Tits metric d_{∞}.

Let M be a connected, complete and noncompact Riemannian 2-manifold with a finite total curvature. The Huber theorem implies that M is finitely connected. A compact set $C \subset M$ is by definition a core of M iff $M \backslash \operatorname{Int}(C)$ consists of k tubes U_{1}, \cdots, U_{k} such that each U_{i} is homeomorphic to $S^{1} \times[0, \infty)$ and such that each ∂U_{i} is a piecewise smooth simple closed curve. If $\kappa\left(\partial U_{i}\right)$ is the total geodesic curvature of ∂U_{i}, then the Gauss-Bonnet theorem implies $c(C)+\sum_{i=1}^{k} \kappa\left(\partial U_{i}\right)=2 \pi \chi(M)$. Moreover

$$
s_{i}:=\kappa\left(\partial U_{i}\right)-c\left(U_{i}\right)
$$

is nonnegative and independent of the choice of tubes having the same end as U_{i} and

$$
2 \pi \chi(M)-c(M)=\sum_{i=1}^{k} s_{i}
$$

In [9] T. Shioya proved that M admits an ideal boundary $M(\infty)$ with the Tits metric d_{∞} such that ($M(\infty), d_{\infty}$) is the union of circles with lengths s_{1}, \cdots, s_{k}.

Let d be the distance function induced from the Riemannian metric of M. We denote by $\left(M_{t} ; o\right)$ for an arbitrary fixed point $o \in M$ and for $t>0$ the scaling by t of the

