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1. Introduction.

It is interesting to study the geometric meaning of total curvature of complete open
surfaces. The influence of the total curvature of a Riemannian plane on the Lebesgue
measure of rays were investigated first by M. Maeda [3], [4], K. Shiga [5] and later
by K. Shiohama, T. Shioya and M. Tanaka [6], etc. The author proved in [2] that a
pointed Hausdorff approximation map between connected, complete and noncompact
Riemannian 2-manifolds with finite total curvature has a natural continuous extension
to their ideal boundaries with the Tits metrics. In view of the above results it is natural
to expect that the scaling limit of such an $M$ will be a flat cone generated by the ideal
boundary $M(\infty)$ of $M$ equipped with the Tits metric $d_{\infty}$ .

Let $M$ be a connected, complete and noncompact Riemannian 2-manifold with a
finite total curvature. The Huber theorem implies that $M$ is finitely connected. A compact
set $C\subset M$ is by definition a core of $M$ iff $M\backslash Int(C)$ consists of $k$ tubes $U_{1},$ $\cdots,$ $U_{k}$

such that each $U_{i}$ is homeomorphic to $ S^{1}\times[0, \infty$ ) and such that each $\partial U_{i}$ is a piecewise
smooth simple closed curve. If $\kappa(\partial U_{i})$ is the total geodesic curvature of $\partial U_{i}$ , then the
Gauss-Bonnet theorem implies $c(C)+\sum_{i=1}^{k}\kappa(\partial U_{i})=2\pi\chi(M)$ . Moreover

$s_{i}:=\kappa(\partial U_{i})-c(U_{i})$

is nonnegative and independent of the choice of tubes having the same end as $U_{i}$ and

$2\pi\chi(M)-c(M)=\sum_{i=1}^{k}s_{i}$ .

In [9] T. Shioya proved that $M$ admits an ideal boundary $M(\infty)$ with the Tits metric
$d_{\infty}$ such that $(M(\infty), d_{\infty})$ is the union of circles with lengths $s_{1},$ $\cdots,$ $s_{k}$ .

Let $d$ be the distance function induced from the Riemannian metric of $M$. We
denote by $(M_{t};0)$ for an arbitrary fixed point $0\in M$ and for $t>0$ the scaling by $t$ of the
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