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\S 1. Introduction and theorem.

In this paper, we study the asymptotic behavior as $ t\rightarrow\infty$ of the solutions of time
dependent Hartree equations

$i\partial_{t}u=-\frac{1}{2}\Delta_{x}u+(|x|^{-\gamma}*|u|^{2})u$ $(H_{\gamma})$

for $\gamma\leq 1$ , where $u=u(t, x),$ $(t, x)\in R\times R^{n}$ . We write $\Vert\cdot\Vert_{p}$ for $L^{p}$-norm, $(\cdot, \cdot)$ for $L^{2}-$

coupling, $H^{l,k}=\{u\in L^{2} : \sum_{|\alpha|\leq l}\Vert\partial_{x}^{\alpha}u\Vert_{2}+\sum_{|\beta|\leq k}\Vert x^{\beta}u\Vert_{2}<\infty\}$ for $l,$ $k=0,1,2,$ $\cdots$ and
$U(t)=\exp[(i/2)t\Delta.]$ . There is a large body of literature on the equation $(H_{\gamma})$ . It is
well-known that a unique global solution exists for any $u_{0}\in H^{1,0}$ if $0\leq\gamma<\min\{4, n\}$ .
(cf. [GV], [DF] etc.) If we assume $\gamma>1$ , any above solution $u$ behaves like free solu-
tion as $t$ goes to infinity: that is, there exists an asymptotic state $u_{+}$ such that
$\Vert u(t)-U(t)u_{+}\Vert_{X}\rightarrow 0$ as $ t\rightarrow\infty$ in a suitable space $X$. On the other hand, if $\gamma\leq 1$ , no
non-trivial solution becomes asymptotically free. (See e.g. [G], [HT], [NO] etc.) But
inferring on the analogy of linear long range scattering theory, the solution of this
case is expected to behave almost free. That is, if we slightly modify the solution $u$ by
a certain phase $S$, then this modified solution is expected to become asymptotically
free. Following result for the case $n\geq 3$ suggests above expectation.

THEOREM 1. Let $u_{0}\in H^{1.1},1\geq\gamma>2/3$ if $n\geq 4,1\geq\gamma>(\sqrt{17}-1)/4$ if $n=3$ , and
$u(t, x)$ be a solution of $(H_{\gamma})$ such that $u(O, x)=u_{0}(x)$ . If we put

$S(\tau, \xi):=\int_{1}^{\tau}(|x|^{-\gamma}*|u|^{2})(s, s\xi)ds=\int_{1}^{\tau}\int_{R^{n}}\frac{|u(s,y)|^{2}}{|s\xi-y|^{\gamma}}dyds$ , (1)

then $u_{+}$ $:=w-\lim_{t\rightarrow\infty}M(t)U(-t)\exp[iS(t, t^{-1}\cdot)]u(t, \cdot)$ exists in $H^{1,0}$ . Here $M(t)=$

$\exp[(i/(2t))|x|^{2}]$ .
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