Tokyo J. Math. Vol. 18, No. 1, 1995

On the Cohomology of Coxeter Groups and Their Finite Parabolic Subgroups

Toshiyuki AKITA

Osaka University (Communicated by T. Nagano)

1. Introduction.

The purpose of this paper is to study the cohomology of Coxeter groups in terms of their parabolic subgroups of finite order. Given finite sets S and $\{m_{ij}\}, (i, j) \in S \times S$, where m_{ij} are integers or ∞ such that $m_{ii} = 1, 2 \le m_{ij} = m_{ji} \le \infty$ $(i \ne j)$, the group W defined by the generators $\{r_i\}_{i\in S}$ and the fundamental relation $(r_ir_j)^{m_{ij}} = 1, m_{ij} \ne \infty$, is called a *Coxeter group*. We will identify the set of generators $\{r_i\}_{i\in S}$ with the set S. Also, if we wish to emphasise the set S we shall write (W, S) in place of W. (Some authors call (W, S) a *Coxeter system*.)

A subgroup of (W, S) generated by a subset $T \subseteq S$ is called a *parabolic subgroup* of W and is denoted by W_T . In particular, $W_S = W$ and W_{\emptyset} is the trivial subgroup. A parabolic subgroup inherits a structure of a Coxeter group in an obvious way. Note that Coxeter groups of finite order are completely classified. The reader will refer to [1] or [6] for a general theory of Coxeter groups.

Given a Coxeter group (W, S), let \mathscr{F} be the poset of (possibly empty) subsets F of S such that W_F is a finite parabolic subgroup of W. Given a W-module A of coefficients, set

$$\mathscr{H}^{*}(W, A) = \liminf_{F \in \mathscr{F}} H^{*}(W_{F}, A),$$

where the inverse limit is taken with respect to the restriction maps $H^*(W_F, A) \rightarrow H^*(W_{F'}, A)$ (where $F \supset F'$), and define

(1)
$$\rho: H^*(W, A) \to \mathscr{H}^*(W, A)$$

to be the canonical homomorphism induced by the restriction maps $H^*(W, A) \rightarrow H^*(W_F, A)$. If A = k is a commutative ring with unity (regarded as a W-module with the trivial W-action), then $\mathscr{H}^*(W, k)$ is a graded ring and ρ is a ring homomorphism.

Received November 15, 1993 Revised September 8, 1994