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1. Introduction.

The purpose of this paper is to study the cohomology of Coxeter groups in terms
of their parabolic subgroups of finite order. Given finite sets $S$ and $\{m_{ij}\},$ $(i,j)\in S\times S$,
where $m_{ij}$ are integers or $\infty$ such that $m_{ii}=1,2\leq m_{tj}=m_{ji}\leq\infty(i\neq j)$ , the group $W$defined
by the generators $\{r_{i}\}_{i\in S}$ and the fundamental relation $(r_{i}r_{j})^{m_{ij}}=1,$ $ m_{ij}\neq\infty$ , is called a
Coxeter group. We will identify the set of generators $\{r_{i}\}_{i\in S}$ with the set $S$. Also, if we
wish to emphasise the set $S$ we shall write $(W, S)$ in place of W. (Some authors call
$(W, S)$ a Coxeter system.)

A subgroup of $(W, S)$ generated by a subset $\tau\subseteq s$ is called a parabolic subgroup
of $W$ and is denoted by $W_{T}$ . In particular, $W_{S}=W$ and $W_{\emptyset}$ is the trivial subgroup. A
parabolic subgroup inherits a structure of a Coxeter group in an obvious way. Note
that Coxeter groups of finite order are completely classified. The reader will refer to
[1] or [6] for a general theory of Coxeter groups.

Given a Coxeter group $(W, S)$ , let $\mathscr{F}$ be the poset of (possibly empty) subsets $F$

of $S$ such that $W_{F}$ is a finite parabolic subgroup of $W$. Given a W-module $A$ of
coefficients, set

$\ovalbox{\tt\small REJECT}^{*}(W, A)=\lim.inv.H^{*}(W_{F}, A)F\in \mathcal{F}$

where the inverse limit is taken with respect to the restriction maps $ H^{*}(W_{F}, A)\rightarrow$

$H^{*}(W_{F’}, A)$ (where $F\supset F^{\prime}$), and define

(1) $\rho:H^{*}(W, A)\rightarrow\ovalbox{\tt\small REJECT}^{*}(W, A)$

to be the canonical homomorphism induced by the restriction maps $ H^{*}(W, A)\rightarrow$

$H^{*}(W_{F}, A)$ . If $A=k$ is a commutative ring with unity (regarded as a W-module with
the trivial W-action), then $\ovalbox{\tt\small REJECT}^{*}(W, k)$ is a graded ring and $\rho$ is a ring homomorphism.
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