Tokyo J. Math. Vol. 18, No. 1, 1995

On Certain Multiple Series with Functional Equation in a Totally Imaginary Number Field I

Takayoshi MITSUI

Gakushuin University

§1. Introduction.

In the recent paper [3], we considered a multiple series in a totally real number field, which is regarded as a generalization of the double series

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{m} e^{-2\pi n m \tau} \qquad (\text{Re} \tau > 0) ,$$

and proved that it satisfies functional equation.

In the present paper, we shall treat analogous problem in a totally imaginary number field. Our method will be similar to that of [3]; the proof is based on the transformation formula of Hecke-Rademacher, the expression of our series by integrals and the calculation of residues.

Let K be a totally imaginary number field of degree n=2r, $K^{(p)}$, $K^{(r+p)}=\overline{K}^{(p)}$ $(p=1, \dots, r)$ the conjugates of K. Let \mathfrak{d} be the differente ideal of K, $D=N(\mathfrak{d})$ the absolute value of the discriminant of K and R the regulator of K.

If μ is a number of K, then we denote by $\mu^{(q)}$ the conjugates of μ in $K^{(q)}$ $(q=1, \dots, n)$. We define *n*-dimensional vector $\mu = (\mu^{(1)}, \dots, \mu^{(n)})$. More generally, we shall often use *n*-dimensional complex vector $\xi = (\xi_1, \dots, \xi_n)$ such that $\xi_{r+p} = \overline{\xi}_p$ $(p=1, \dots, r)$ and write

$$S(\xi) = \sum_{q=1}^{n} \xi_q$$
, $N(\xi) = \prod_{q=1}^{n} \xi_q$.

Let τ_1, \dots, τ_n be positive numbers such that $\tau_{r+p} = \tau_p$ $(p=1, \dots, r)$. Let $\xi = (\xi_1, \dots, \xi_n)$ be a complex vector stated above. Let a and b be non-zero fractional ideals of K. For these τ , ξ , a and b, we define the series $M(\tau, \xi; a, b)$ as follows:

(1.1)
$$M(\tau, \xi; \mathfrak{a}, \mathfrak{b}) = \sum_{\substack{(\mu) \subset \mathfrak{a} \\ (\mu) \neq 0}} \frac{1}{N(\mu)^{1/2}} \sum_{\substack{\nu \in \mathfrak{b} \\ \nu \neq 0}} \exp\{-2\pi S(|\nu\mu|\tau) + 2\pi i S(\mu\nu\xi)\},$$

Received July 20, 1993