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\S 0. Introduction.

Let $G$ be a connected reductive algebraic group with connected center and split
over a finite field $F_{q}$ of characteristic $p$ , and $F$ the corresponding Frobenius morphism.
Then the subgroup $G=G^{F}$ of $G$ consisting of elements fixed by $F$ is a finite Chevalley
group. The table consisting of the values at unipotent elements of the unipotent char-
acters of $G$ which we shall simply call the unipotent character table of $G$, is an essential
part of the character table of $G$ .

If $G$ has type $F_{4}$ and $p$ is good for $G$ (that is, $p\geq 5$), the problem of completing
the unipotent character table of $G$ is reduced to the determination of the values of one
almost character; this was settled independently by N. Kawanaka [Ka2, Ka3] and G.
Lusztig ([Lu3], cf. Remark 4.3 of this paper also). The purpose of this paper is to form
the table in the cases $p=2$ or 3. And since the unipotent character table when $p\geq 5$ can
be obtained at once from that when $p=3$ (cf. Remark 4.5), we could actually form this
table as well.

Through the Fourier transform matrix introduced by G. Lusztig [Lul], the deter-
mination of the values of irreducible characters of $G$ is equivalent to the determination
of the values of almost characters. And the almost characters are closely related to
another set of class functions on $G$ called the characteristic functions associated with
character sheaves of $G$ , also due to Lusztig [Lu2]. In fact, he conjectured that if $p$ is
almost good for $G$ the characteristic functions coincide with the almost characters up
to multiplication by a scalar. In [Sho4], T. Shoji proved Lusztig’s conjecture in the
case where $G$ has connected center; moreover, he showed that for $G$ of type $F_{4}$ , Lusztig’s
conjecture also holds when $p=3$ , and a weaker version of it holds when $p=2$ (cf.
Theorem 1.7).

Now, $G=F_{4}(p^{n})$ has 37 unipotent characters and using known results, we can
compute the values at unipotent elements of 30 of the corresponding almost characters.
Our problem therefore is to determine the values of the remaining 7 almost characters,
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