Токуо Ј. Матн. Vol. 19, No. 1, 1996

On Normal Bases of Some Ring Extensions in Number Fields I

Fuminori KAWAMOTO

Gakushuin University

1. Introduction.

Let k be a number field and K/k a finite Galois extension with Galois group G = Gal(K/k). For a number field N, o_N denotes the ring of integers in N. Let S be a finite set of prime ideals of o_k that contains all prime ideals which are wildly ramified in K/k. For a finite extension N/k, we simply denote by $o_N(S)$ the ring of elements a in N with $\operatorname{ord}_{\mathfrak{P}}(a) \ge 0$ for all prime ideals \mathfrak{P} of o_N , not lying above S. The field K can be regarded as a module over the group ring kG of G over k by the action $\alpha^{\lambda} = \sum_{s \in G} a_s \alpha^s$ for $\alpha \in K$ and $\lambda = \sum_{s \in G} a_s s \in kG$. We say that a ring extension $o_K(S)/o_k(S)$ has a normal basis if $o_K(S)$ is a free $o_k(S)[G]$ -module, that is, there exists some α in $o_K(S)$ such that $\{\alpha^s\}_{s \in G}$ is a free $o_k(S)$ -basis of $o_K(S)$. The extension $o_K(S)/o_k(S)$ is called *ramified* if there exists some prime ideal of o_k , not belonging to S, which is ramified in K/k (this means that such prime ideal of o_k is ramified in the Dedekind ring extension o_K/o_k , as usual). If not so, then it is called *unramified*.

We remark the following fact on the existence of normal bases of extensions of the rings of S-integers which was pointed out by H. Suzuki and whose proof is due to him. It says that we can take a sufficiently large set $U \cup S$, keeping the ramification of primes outside S, such that $\mathfrak{o}_{\kappa}(U \cup S)/\mathfrak{o}_{k}(U \cup S)$ has a normal basis.

PROPOSITION 1.1. Let the notations be as above and $T(\neq \emptyset)$ a finite set of prime ideals of \mathfrak{o}_k that contains all prime ideals, not belonging to S, which are ramified in K/k. Then there exists a finite set U of prime ideals of \mathfrak{o}_k such that $U \cap T = \emptyset$ and $\mathfrak{o}_K(U \cup S)/\mathfrak{o}_k(U \cup S)$ has a normal basis.

PROOF. Let $V := \mathfrak{o}_k - \bigcup_{\mathfrak{p} \in T} \mathfrak{p}$ be a multiplicative subset of \mathfrak{o}_k and $V^{-1}\mathfrak{o}_k$ a ring of quotients of \mathfrak{o}_k . Then $V^{-1}\mathfrak{o}_k$ is a semi-local ring with maximal ideals $\{\mathfrak{p} \cdot (V^{-1}\mathfrak{o}_k)\}_{\mathfrak{p} \in T}$ and $V^{-1}\mathfrak{o}_K$ is a $(V^{-1}\mathfrak{o}_k)[G]$ -module. Since all primes in T are tamely ramified, there exists some α in \mathfrak{o}_K such that $1 \otimes \alpha$ is a free generator of $\mathfrak{o}_{k_\mathfrak{p}} \otimes_{\mathfrak{o}_k} \mathfrak{o}_k$ over $\mathfrak{o}_{k_\mathfrak{p}} G$ for each $\mathfrak{p} \in T$ (Cf. [8, Lemma 2.6]), where $\mathfrak{o}_{k_\mathfrak{p}}$ denotes the valuation ring of the completion of

Received October 17, 1994