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1. A. Beurling [2] considered a class of functions of $R^{1}$ , each member of which
is the Fourier transform of an integrable function. The purpose of this paper is to
extend his results to the class of functions on $R^{n}$ . Let us start to set notations, definitions
and theorems, which we shall ask for, according to A. Beurling [2]. We consider a
normed family $\Omega$ of strictly positive functions $\omega(x)$ on $R^{n}$ which are measurable with
respect to the ordinary Lebesgue measure $dx$ , and furthermore, together with the norm
$N(\omega)$ , satisfy the following conditions:

(I) For each $\omega\in\Omega,$ $N(\omega)$ takesa finite value,

(1.1) $0<\int\omega dx\leq N(\omega)$ .

(II) If $\lambda$ isapositive number and $\omega\in\Omega$ , then $\lambda\omega\in\Omega$ and

(1.2) $N(\lambda\omega)=\lambda N(\omega)$ .

(III) If $\omega_{1},$ $\omega_{2}\in\Omega$, the sum $\omega_{1}+\omega_{2}$ as well as the convolution $\omega_{1}*\omega_{2}$ are also in
$\Omega$ and

(1.3) $N(\omega_{1}+\omega_{2})\leq N(\omega_{1})+N(\omega_{2})$ ,

(1.4) $N(\omega_{1}*\omega_{2})\leq N(\omega_{1})N(\omega_{2})$ .
(IV) $\Omega$ is complete under the norm $N$ in the sense that for any sequence $\{\omega_{n}\}_{1}^{\infty}\subset\Omega$

such that $\sum_{1}^{\infty}N(\omega_{n})<\infty$ , it is satisfied that $\omega=\sum_{1}^{\infty}\omega_{n}$ is in $\Omega$ and

(1.5) $N(\omega)\leq\sum_{1}^{\infty}N(\omega_{n})$ .

The set of measures $\{\omega dx;\omega\in\Omega\}$ constitutes our starting point for the following
constructions of Banach algebra and shall be referred to as a normed semi-ring of
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