Homologically Trivial Self-Maps

Akira SASAO
Waseda University
(Communicated by K. Akao)

0. Introduction.

In the previous paper [2], we investigated the image of the homology representation $H_{X}:[X, X] \rightarrow \operatorname{End}\left(H_{*}(X)\right)$ for a complex X of the form $S^{n} \cup e^{n+2} \cup e^{n+4}$ where $[X, X]$ denotes the set of homotopy classes of self-maps of X. This problem was equivalent to characterizing a triple of integers $\left(d_{1}, d_{2}, d_{3}\right)$ which can be obtained from a self-map as its degrees.

In this paper we investigate the case $\left(d_{1}, d_{2}, d_{3}\right)=(0,0,0)$, namely, homologically trivial self-maps of X. The homotopy groups $\pi_{n+4}(A)$ and $\pi_{n+3}(A), A=S^{n} \cup e^{n+2}$, play an important role for our purpose. Then some differences exist between the case $n=2$ and the others, so we concentrate on the case $n \geqq 3$ in this paper. Our method is to construct short exact sequences containing $H_{X}^{-1}(0)$ in the category of sets with distinguished elements. If X is a suspended complex, this category turns out to be the category of groups, so the results become more clear. Here we state some results from our theorems. Let X be a complex as above.
(1) If $S q^{2}\left(e^{n}\right) \neq 0(n \geqq 6)$, or $S q^{2}\left(e^{n}\right) \neq 0$ and $S q^{4}\left(e^{n}\right) \neq 0(n=4,5)$, then homologically trivial self-maps of X are also homotopically trivial.
(2) If $S q^{2}\left(e^{n}\right)=0$ and $S q^{2}\left(e^{n+2}\right) \neq 0(n \geqq 4)$, then the same conclusion as (1) holds with an exceptional case in which there exists only one homotopically non-trivial but homologically trivial self-map.
(3) For $n=3$, the set of homologically trivial self-maps contains countablly infinite many homotopically non-trivial ones.
(4) Let ξ be an n-dimensional real vector bundle over $C P^{2}$ and $T(\xi)$ be the Thom complex of $\xi(n \geqq 5)$. Suppose the second Stiefel-Whitney class $w_{2}(\xi)=0$. Then, for self-maps of $T(\xi)$, homological triviality is equal to homotopical triviality.

Throughout this paper we use the same notations as ones in [2] for generators of homotopy groups of spheres, and the following:

$$
A=S^{n} \cup e^{n+2}, \quad X=A \cup e^{n+4}, \quad \text { and } \quad Y=X / S^{n}=S^{n+2} \cup e^{n+4},
$$

[^0]
[^0]: Received August 25, 1994

