Токуо Ј. Матн. Vol. 19, No. 2, 1996

On a Local Embedding Theorem of Generalized-Mizohata Structures

Takao AKAHORI

Himeji Institute of Technology (Communicated by T. Suzuki)

Introduction.

The purpose of this paper is to generalize the Hounie and Malagutti's local embedding theorem for Mizohata structures and to discuss their embedding theorem in the frame work of *Kuranishi*.

It is Treves who introduced the notion of Mizohata structures (cf. [Tr1]). Hounie and Malagutti developed Treves's theory and proved that; any formally integrable Mizohata structure is actually integrable if the Mizohata structure is strongly pseudoconvex and $\dim_{\mathbf{R}} M \ge 3$ (cf. [H-M]). This result reminds us of the CR-local embedding theorem (cf. [A2], [Ku3]), namely any formally integrable CR structure $(M, {}^{0}T'')$ is actually integrable if the CR structure $(M, {}^{0}T'')$ is strongly pseudoconvex and $\dim_{\mathbf{R}} M = 2n - 1 \ge 7$. Furthermore, in many points, Mizohata structures quite resemble CR structures. Hence it seems quite reasonable to try to discuss both in one context. We, therefore, introduce a notion of a generalized complex manifold and consider a regular real hypersurface M, namely a submanifold with real codimension 1, which satisfies some conditions in a generalized complex manifold. Over this hypersurface, from the generalized complex manifold, naturally a structure (M, E_M) is induced as in the CR case, which we call a generalized-Mizohata structure. Like formally integrable CR structures, we introduce a notion of a formally integrable generalized-Mizohata structure, and consider the local embedding theorem. With these in mind, in a more general context, we would like to discuss a local embedding theorem of generalized-Mizohata structures, which covers Hounie and Malagutti's local embedding theorem, and the CR-local embedding theorem (see [Ku1], [Ku2], [Ku3]). For this purpose, we recall the proof of the local embedding theorem of CR-structures (cf. [A2]). The proof consists of the following three parts.

Part 1. Let f be a C^{∞} local embedding of M into Cⁿ at the reference point p_0 . We set a neighborhood of p_0 by

Received May 1, 1995