Cartan Embeddings of Compact Riemannian 3-Symmetric Spaces

Katsuya MASHIMO
Tokyo University of Agriculture and Technology
(Communicated by T. Nagano)

Dedicated to Professor Masaru Takeuchi on his sixtieth birthday

Introduction.

Let G be a compact connected Lie group and σ be an automorphism on G. We put $K=\{k \in G: \sigma(k)=k\}$. A mapping $g \mapsto g \sigma\left(g^{-1}\right)$ of G into G naturally induces an embedding of G / K into G. We denote the embedding by Ψ_{σ} and call it the Cartan embedding.

If we assume that σ is an involutive automorphism, then Ψ_{σ} is a totally geodesic embedding. The author classified the compact irreducible symmetric pairs (G, K) such that the image of the corresponding Cartan embedding is a stable minimal submanifold of G ([4]).

In this paper, we study the similar problem for the case that G is a compact simple Lie group and σ is an automorphism of order 3. In this case, the image of the Cartan embedding is not necessarily a minimal submanifold. So we study

1. Is Cartan embedding a minimal embedding?
2. If it is a minimal embedding, then is the image a stable minimal submanifold?

1. Cartan embedding.

Let G be a compact connected simple Lie group and σ be an automorphism on G. We denote by \mathfrak{g} and \mathfrak{f} the Lie algebras of G and $K=\{k \in G: \sigma(k)=k\}$ respectively. Take an $\operatorname{Ad}(G)$-invariant and $d \sigma$-invariant inner product \langle,$\rangle on \mathfrak{g}$. We extend \langle,$\rangle to a$ biinvariant Riemannian metric on G and denote it also by \langle,$\rangle . Let m$ be the orthogonal complement of \mathfrak{f} in \mathfrak{g}. We identify the subspace \mathfrak{m} with the tangent space M_{o} of M at the origin $o=e K$ by the projection $G \rightarrow M=G / K$. A G-invariant Riemannian metric g on M is said to be a normal homogeneous metric if it is associated with the restriction

