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0. Introduction

For each prime number p=1 (mod 4), one attaches a graph without direction to
the prime field F,=Z/pZ by means of the Legendre symbol (cf. §1.1). This graph leads
naturally to a rank two reflexive sheaf, denoted €, on the (p — 1)-dimensional complex
projective space P,_,(C) (cf. [SEK 1], [SEK 2]). If p=35, then it coincides with the
Horrocks-Mumford bundle (cf. [H-M]). The sheaf is both arithmetic and com-
binatorial in nature and it is seen that invariants of the graph are useful to describe
the structure of the sheaf €,. As a typical example, which is our main result in [SEK
2], the fourth Chern class c,(€,) (€ Z) is given by

(C1 cy(€,)=—404",
where (cf. §1.1)
N =#{IcF, | #I=4 and whose graph is isomorphic to the square} .

The set is related explicitly to a K3 surface, denoted V, which is defined to be the locus
of the following quadratic relations in the five dimensional projective space P(F,) with
homogeneous coordinates z,; (1 <a<f<4) (cf. [SEK 1])

(C2) zhp+zg,=22  (1<a<f<y<4).

Now, it is known that the Shioda elliptic modular surface S(4) of level 4 is birationally
equivalent to a certain Kummer surface (cf. [Sh 3]). In §1 we see that V is biregularly
equivalent to the Kummer surface. By a structure theorem of S(4) (cf. [Sh 3]), the zeta
function of S(4) (and so that of V) is expressed by means of the Gaussian sum. Using
this we give the following explicit form for (C1)
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