Quadratic Residue Graph and Shioda Elliptic Modular Surface $\boldsymbol{S (4)}$

Hirotachi ABO, Nobuo SASAKURA and Tomohide TERASOMA

Tokyo Metropolitan University
Dedicated to the memory of Professor M. Ishida*

0. Introduction

For each prime number $p \equiv 1(\bmod 4)$, one attaches a graph without direction to the prime field $\mathbf{F}_{p}=\mathbf{Z} / p \mathbf{Z}$ by means of the Legendre symbol (cf. §1.1). This graph leads naturally to a rank two reflexive sheaf, denoted \mathfrak{E}_{p}, on the ($p-1$)-dimensional complex projective space $\mathbf{P}_{p-1}(\mathbf{C})$ (cf. [SEK 1], [SEK 2]). If $p=5$, then it coincides with the Horrocks-Mumford bundle (cf. [H-M]). The sheaf is both arithmetic and combinatorial in nature and it is seen that invariants of the graph are useful to describe the structure of the sheaf \mathfrak{E}_{p}. As a typical example, which is our main result in [SEK 2], the fourth Chern class $c_{4}\left(\mathscr{E}_{p}\right)(\in \mathbf{Z})$ is given by

$$
\begin{equation*}
c_{4}\left(\mathfrak{F}_{p}\right)=-40 \mathscr{N}, \tag{C1}
\end{equation*}
$$

where (cf. §1.1)

$$
\mathscr{N}=\#\left\{I \subset \mathbf{F}_{p} \mid \# I=4 \text { and whose graph is isomorphic to the square }\right\} .
$$

The set is related explicitly to a $K 3$ surface, denoted V, which is defined to be the locus of the following quadratic relations in the five dimensional projective space $\mathbf{P}_{5}\left(\mathbf{F}_{p}\right)$ with homogeneous coordinates $z_{\alpha \beta}(1 \leq \alpha \leq \beta \leq 4)(c f .[S E K ~ 1])$

$$
\begin{equation*}
z_{\alpha \beta}^{2}+z_{\beta \gamma}^{2}=z_{\alpha \gamma}^{2} \quad(1 \leq \alpha<\beta<\gamma \leq 4) . \tag{C2}
\end{equation*}
$$

Now, it is known that the Shioda elliptic modular surface $S(4)$ of level 4 is birationally equivalent to a certain Kummer surface (cf. [Sh 3]). In §1 we see that V is biregularly equivalent to the Kummer surface. By a structure theorem of $S(4)$ (cf. [Sh 3]), the zeta function of $S(4)$ (and so that of V) is expressed by means of the Gaussian sum. Using this we give the following explicit form for (C1)

[^0]
[^0]: Received January 19, 1995

 * To the memory of his generosity for younger mathematicians and to his high regard for the reciprocity law in the quadratic residue theory.

