Realization of Spaces $E_6/(U(1)Spin(10))$, $E_7/(U(1)E_6)$, $E_8/(U(1)E_7)$ and Their Volumes

Kōjun ABE and Ichiro YOKOTA

Shinshu University
(Communicated by T. Nagano)

Freudenthal [3], [4] introduced cross operations \times on the spaces \mathfrak{J}^{c} , \mathfrak{P}^{c} and \mathfrak{e}_{8}^{c} , respectively. Using these operations, we give definite expressions of the exceptional symmetric spaces *EIII*, *EVII* and the twister space Z(EIX) of the exceptional symmetric space EIX as follows:

$$\begin{split} EIII &= \{X \in \mathfrak{J}^C \, \big| \, X \times X = 0, \, X \neq 0 \} / C^* \cong E_6 / (U(1) \times Spin(10)) / \mathbb{Z}_4 \, , \\ EVII &= \{P \in \mathfrak{P}^C \, \big| \, P \times P = 0, \, P \neq 0 \} / C^* \cong E_7 / (U(1) \times E_6) / \mathbb{Z}_3 \, , \\ Z(EIX) &= \{R \in \mathfrak{e}_8^C \, \big| \, R \times R = 0, \, R \neq 0 \} / C^* \cong E_8 / (U(1) \times E_7) / \mathbb{Z}_2 \, . \end{split}$$

We then compute the first Chern classes by using the above expressions and calculate the volumes $\mu(M, g)$ of those spaces M with respect to the metric g indicated in 1.2, 2.2 and 3.2. This follows from the cohomology ring structures of the spaces together with the Borel-Hirzebruch formula. The results enable us calculating the volumes of the symmetric spaces of exceptional type [1]. Our results are as follows:

$$\mu(EIII, g) = \frac{78}{16!} \pi^{16} , \qquad \mu(EVII, g) = \frac{13110}{27!} \pi^{27} ,$$

$$\mu(Z(EIX), g) = \frac{2^{12} 3^2 5^2 7 31 37 41 43 47 53}{57!} \pi^{57} .$$

1. EIII.

1.1. The Lie group E_6 and its Lie algebra e_6 . Let $\mathfrak C$ be the Cayley algebra and $\mathfrak J = \{X \in M(3,\mathfrak C) \, \big| \, X^* = X\}$ be the exceptional Jordan algebra with the Jordan multiplication $X \circ Y = \frac{1}{2}(XY + YX)$ and the Freudenthal multiplication

$$X \times Y = \frac{1}{2} (2X \circ Y - \text{tr}(X)Y - \text{tr}(Y)X + (\text{tr}(X)\text{tr}(Y) - (X, Y))E)$$
.