Dynamical System on Cantor Set

Makoto MORI

Nihon University
(Communicated by K. Katayama)

1. Introduction.

We will consider Cantor sets generated by piecewise $C^{1+\gamma}$ transformations ($\gamma > 0$). In this article, we only consider Markov cases. Non Markov (but piecewise linear) cases will be studied in [6]. A heuristic argument will also appear in that paper.

Let us denote I=[0, 1]. We assume that there exists a finite set \mathscr{A} of symbols, and a subinterval $\langle a \rangle \subset I$ corresponds to a symbol $a \in \mathscr{A}$, and

- 1. $\bigcup_{a \in \mathcal{A}} \langle a \rangle = I$,
- 2. $\langle a \rangle \cap \langle b \rangle = \emptyset$ if $a \neq b$.

Take a subset $\mathscr{A}_1 \subset \mathscr{A}$, and we consider a mapping F from $\bigcup_{a \in \mathscr{A}_1} \langle a \rangle$ to I such that

- 1. F is monotone on each $\langle a \rangle$ and it can extend to $\overline{\langle a \rangle}$ in $C^{1+\gamma}$ ($\gamma > 0$) (piecewise $C^{1+\gamma}$).
- 2. if $F(\langle a \rangle) \cap \langle b \rangle \neq \emptyset$ for $a, b \in \mathcal{A}_1$, then $\overline{F(\langle a \rangle)} \supset \langle b \rangle$ (Markov),
- 3. $\xi = \liminf_{n \to \infty} \frac{1}{n} \operatorname{ess inf}_{x \in I} \log |F^{n'}(x)| > 0$ (expanding),
- 4. for each $a, b \in \mathcal{A}_1$, there exists n such that $\overline{F^n(\langle a \rangle)} \supset \langle b \rangle$ (irreducible), where we denote the closure of a set J by \overline{J} . Note that from the above assumption, we get

$$\log \underset{x \in I}{\operatorname{ess inf}} |F^{n}(x)| > 0$$

for some n>0. Here we denote by F^n the n-th iteration of F:

$$F^{n}(x) = \begin{cases} x & \text{if } n = 0, \\ F^{n-1}(F(x)) & \text{if } n \ge 1. \end{cases}$$

Thus, hereafter we assume without loss of generality that

$$\xi_0 = \log \underset{x \in I}{\operatorname{ess inf}} |F'(x)| > 0.$$

We will consider a set