Tokyo J. Math. Vol. 21, No. 1, 1998

On the First Eigenvalue of the *p*-Laplacian in a Riemannian Manifold

Hiroshi TAKEUCHI

Shikoku University (Communicated by Y. Maeda)

1. Introduction and results.

Let Ω be a bounded domain in a Riemannian manifold (M, g) of dimension m. We consider the following Dirichlet problem:

(1)
$$\Delta_{p}u + \lambda |u|^{p-2}u = 0 \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial\Omega,$$

where $\Delta_p u = \operatorname{div}(|\nabla u|_a^{p-2} \nabla u)$ is the *p*-Laplacian with 1 . In local coordinates,

$$\Delta_p u = \frac{1}{\sqrt{\det(g_{ij})}} \sum_{i,j=1}^m \frac{\partial}{\partial x^i} \left(\sqrt{\det(g_{ij})} g^{ij} |\nabla u|^{p-2} \frac{\partial u}{\partial x^j} \right),$$

where $|\nabla u|^2 = |\nabla u|_g^2 = \sum_{ij} g^{ij} (\partial u / \partial x^i) (\partial u / \partial x^j)$, and $(g^{ij}) = (g_{ij})^{-1}$. The first eigenvalue $\lambda_{1,p}(\Omega)$ of the *p*-Laplacian is defined as the least real number λ for which the Dirichlet problem (1) has a nontrivial solution $u \in W_0^{1,p}(\Omega)$. Here the Sobolev space $W_0^{1,p}(\Omega)$ is the completion of $C_0^{\infty}(\Omega)$ with respect to the Sobolev norm $||u||_{1,p} = \{\int_{\Omega} (|u|^p + |\nabla u|^p) dv_g\}^{1/p}$. It can be also characterized by

(2)
$$\lambda_{1,p}(\Omega) = \inf_{u \neq 0} \frac{\int_{\Omega} |\nabla u|^p dv_g}{\int_{\Omega} |u|^p dv_g},$$

where u runs over $W_0^{1,p}(\Omega)$ and dv_g denotes the volume element of M. We would like to estimate the $\lambda_{1,p}(\Omega)$. For the case p=2, there have been several results, such as the Faber-Krahn inequality [1], the Cheeger inequality [2], and the Cheng inequality [3]. The purpose of this paper is to give inequalities for their *p*-Laplacian analogue. More precisely we show the following theorems.

THEOREM 1 (the Faber-Krahn type inequality). Let M_k be a complete simply connected Riemannian manifold of constant sectional curvature κ . Let B be the geodesic

Received November 8, 1996