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Introduction.

The purpose of this note is to study linear isometries on function algebras, especially
isometric shift operators on the disc algebra. For a compact Hausdorff space $X$, we
denote by $C(X)$ the Banach space of all complex-valued continuous functions on $X$.
Recently, A. Gutek, D. Hart, J. Jamison and M. Rajagopalan [5] and F. O. Farid and
K. Varadarajan [3] have obtained many significant results conceming isometric shift
operators on Banach spaces, especially on $C(X)$ . Here we investigate linear isometries
on function algebras and isometric shift operators on the disc algebra.

In section 1, we give a representation of a codimension 1 linear isometry on a
function algebra and in section 2, on the disc algebra $A$ , we establish the form of a
codimension 1 linear isometry $\varphi$ and give equivalent conditions under which $\varphi$ is a shift
operator.

1. Codimension llinear isometries on function algebras.

Let $E$ be a Banach space and $\varphi$ a linear isometry from $E$ into $E$. Then we call $\varphi$

a codimension 1 linear isometry on $E$ if the range of $\varphi$ has codimension 1. A bounded
linear operator $\varphi$ on $E$ is called a shift operator on $E$ if the following conditions are
satisfied: (i) $\varphi$ is injective; (ii) the range of $\varphi$ has codimension 1; and $(iii)\bigcap_{n=1}^{\infty}\varphi^{n}(E)=\{0\}$ .
A linear isometry on $E$ which is a shift operator is an isometric shift operator on $E$.

Let $X$ be a compact Hausdorff space. We say that $A$ is a function algebra on $X$ if
it is a closed subalgebra of $C(X)$ , the Banach algebra of all complex-valued continuous
functions on $X$ with the supremum norm, which separates points in $X$ and contains the
constants. After now, we consider codimension 1 linear isometries on function algebras
and isometric shift operators on the disc algebra.

The following extends a theorem of Gutek, Hart, Jamison and Rajagopalan [5,

Theorem 2.1] to the case of the function algebras (cf. [9]).

THEOREM 1.1. Let $A$ be afunction algebra on a compact Hausdorffspace X Suppose
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