Strongly q-Additive Functions and Algebraic Independence

Takeshi TOSHIMITSU

Keio University
(Communicated by Y. Maeda)

1. Introduction.

Let $q \geq 2$ be a fixed integer. A complex-valued function $a(n)$ is said to be q-additive or q-multiplicative if

$$
\begin{equation*}
a\left(k q^{t}+r\right)=a\left(k q^{t}\right)+a(r), \quad a(0)=0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
a\left(k q^{t}+r\right)=a\left(k q^{t}\right) a(r), \quad a(0)=1 \tag{2}
\end{equation*}
$$

for any integer $k \geq 0, t \geq 0$, and $0 \leq r<q^{t}$, respectively. Furthermore, if

$$
\begin{equation*}
a(k q)=a(k), \tag{3}
\end{equation*}
$$

$a(n)$ is said to be strongly q-additive or strongly q-multiplicative, respectively. We note that the strongly q-additive or q-multiplicative function $a(n)$ is determined completely by the initial values $a(1), \cdots, a(q-1)$. This paper concerns mainly with q-additive functions.

Let $a_{1}(n), \cdots, a_{m}(n)$ be m strongly q-additive functions. For each $a_{k}(n)$, we define a power series $f_{k}(z)$ by

$$
\begin{equation*}
f_{k}(z):=\sum_{n \geq 0} a_{k}(n) z^{n} \in \mathbf{C}[[z]] \quad(1 \leq k \leq m) \tag{4}
\end{equation*}
$$

It follows from (1) and (3) that each $f_{k}(z)$ converges in $|z|<1$ and satisfies the functional equation

$$
\begin{equation*}
f_{k}(z)=\frac{1-z^{q}}{1-z} f_{k}\left(z^{q}\right)+\frac{1}{1-z^{q}} \sum_{r=0}^{q-1} a_{k}(r) z^{r} \quad(1 \leq k \leq m) \tag{5}
\end{equation*}
$$

since

[^0]
[^0]: Received July 24, 1996
 Revised January 7, 1997

