Токуо Ј. Матн. Vol. 21, No. 1, 1998

On Presheaves Associated to Modules

Koji SEKIGUCHI

Sophia University

Introduction.

Let A be a commutative ring with unity. For a subset E of SpecA, we put

(1)
$$S_E = \bigcap_{\mathbf{p} \in E} (A \setminus \mathbf{p}) \quad (S_{\emptyset} = A).$$

Then S_E is a saturated multiplicatively closed set.

To an A-module M, we associate a presheaf \overline{M} in the following way. By putting

$$(2) \qquad \qquad \bar{M}(U) = S_U^{-1}M$$

for an open subset U of Spec A, we define a presheaf \overline{M} of modules on Spec A. Then

(3)
$$\overline{M}(D(f)) = M_f \quad \text{for} \quad f \in A$$
,

(4) $\bar{M}_{p} = M_{p}$ for $p \in \operatorname{Spec} A$,

where $D(f) = \{ \mathfrak{p} \in \text{Spec} A \mid f \notin \mathfrak{p} \}$. Here \overline{M} is not a sheaf in general. But the sheafification of \overline{M} turns out to be the quasi-coherent \widetilde{A} -module \widetilde{M} . Then we ask the question: When is the presheaf \overline{M} actually a sheaf?

Noting that \overline{M} is a sheaf if and only if $\overline{M} = \widetilde{M}$, we introduce the following three conditions for a ring A:

(S.1) $\overline{M} = \widetilde{M}$ for any *A*-module *M*.

(S.2) $\bar{a} = \tilde{a}$ for any ideal a of A.

.....

$$(S.3) \qquad \bar{A} = \tilde{A}.$$

Then it is obvious that $(S.1) \Rightarrow (S.2) \Rightarrow (S.3)$.

The main results of this paper are as follows.

THEOREM 1. Suppose that A is a valuation ring. Then

Received May 7, 1996 Revised July 10, 1996