Токуо Ј. Матн. Vol. 21, No. 2, 1998

On the Existence of a Conjugacy between Weakly Multimodal Maps

Hitoshi SEGAWA and Hiroshi ISHITANI

Mie Prefecture Board of Education Bureau and Mie University (Communicated by K. Mochizuki)

ster in

1. Introduction.

In this paper we study the existence of a conjugacy between weakly multimodal maps, which are defined in Definition 1.2, and Hölder continuity of the conjugacy. Throughout this paper let I be a closed interval [0, 1] except §3.1, and n be an integer. We first recall the notion of topological conjugacy.

DEFINITION 1.1. Let $f, g: I \rightarrow I$ be two maps. f and g are topologically conjugate if there exists a homeomorphism $\varphi: I \rightarrow I$ such that

(1.1)
$$\varphi \circ f = g \circ \varphi .$$

The map φ is called the *conjugacy* between f and g.

If the map $\varphi: I \to I$ satisfying (1.1) is continuous monotone surjection, f and g are semi-conjugate. The map φ is called the semi-conjugacy.

The key idea is the following. If we can define the "inverse" g^{-1} in some sense, we have the operator $\mathscr{T}\alpha = g^{-1} \circ \alpha \circ f$ whose fixed point φ , if it exists, should have the equality $g \circ \varphi = \varphi \circ f$. This idea is found in [1] and [2]. We treat with the following class of transformations.

DEFINITION 1.2. The map $f: I \to I$ is weakly multimodal if it is continuous and there are points $0=a_0 \le b_0 < a_1 \le b_1 < \cdots < a_{l+1} \le b_{l+1}=1$ such that $f|[b_i, a_{i+1}]$ is strictly monotone and $f|[a_i, b_i]$ is a constant function. Assume that the set $\{a_0=0, b_0, a_1, b_1, \cdots, a_{l+1}, b_{l+1}=1\}$ is chosen as small as possible. Let $J_i = [a_i, b_i]$. We say that the J_i 's are flat intervals.

The following class of maps are known as the *l*-modal maps, if $a_i = b_i$ for all *i*. This map is a special case of weakly multimodal maps (cf. [3]).

Received May 27, 1997 Revised November 10, 1997