Токуо J. Матн. Vol. 21, No. 2, 1998

On Deformations of Einstein-Weyl Structures

Minyo KATAGIRI

Nara Women's University (Communicated by T. Nagano)

1. Introduction.

Let M be an *n*-dimensional manifold with a conformal class C. A conformal connection on M is an affine connection D preserving the conformal class C. We also assume D is torsion-free. The triple (M, C, D) is called a Weyl manifold or (C, D) is called a Weyl structure on M. A Weyl manifold admits an Einstein-Weyl structure if the symmetric part of the Ricci curvature of the conformal connection is proportional to a conformal metric which belongs to C. The Einstein-Weyl equations on the metric and affine connection are conformally invariant nonlinear partial differential equations. If (M, g) is an Einstein-Weyl structure. So the notion of the Einstein-Weyl manifolds is a generalization of an Einstein metric to conformal structures.

In this paper we consider infinitesimal deformations of an Einstein metric as an Einstein-Weyl structure, and we prove any such deformation comes from conformal Killing vector fields provided certain conditions of curvatures are satisfied.

2. Preliminaries.

Let (M, C, D) be a Weyl manifold. We assume $n = \dim M \ge 3$. This implies the existence of a 1-form ω_g such that $Dg = \omega_g \otimes g$. Let Ric^D denote the Ricci curvature of D. In general, Ricci curvature of conformal connection is not symmetric, so we denote by $\operatorname{Sym}(\operatorname{Ric}^D)$ its symmetric part. The scalar curvature R_g^D of D with respect to $g \in C$ is defined by

$$R_q^D = \operatorname{tr}_q \operatorname{Ric}^D. \tag{1}$$

A Weyl manifold (M, C, D) is said to be *Einstein-Weyl manifold* if the symmetric part of the Ricci curvature Ric^D is proportional to the metric g in C. So the

Received April 8, 1997