Estimates for the Operators $V^{\alpha}(-\Delta+V)^{-\beta}$ and $V^{\alpha} \nabla(-\Delta+V)^{-\beta}$ with Certain Non-negative Potentials V

Satoko SUGANO

Gakushuin University
(Communicated by K. Akao)

1. Introduction and main results.

Let $V \in L_{\text {loc }}^{1}\left(\mathbf{R}^{n}\right), n \geq 3$, be a non-negative potential and consider the Schrödinger operator $L=-\Delta+V$. If V belongs to the reverse Hölder class B_{q}, the L^{p} boundedness of the operators $V L^{-1}, V^{1 / 2} L^{-1 / 2}, V^{1 / 2} \nabla L^{-1}$, and $\nabla L^{-1 / 2}$ were proved by Shen ([Sh]). For operators of the type $V L^{-1}$ and $V^{1 / 2} \nabla L^{-1}$, these results were generalized as follows ([KS]). We replace Δ by the second order uniformly elliptic operator L_{0} and let $L=L_{0}+V$. Suppose V satisfy the same condition as above. Then, the operators $V L^{-1}$ and $V^{1 / 2} \nabla L^{-1}$ are bounded on weighted L^{p} spaces and Morrey spaces.

The purpose of this paper is to extend Shen's results to another direction. More precisely, we shall investigate the $L^{p}-L^{q}$ boundedness of the operators

$$
\begin{array}{ll}
T_{1}=V^{\alpha}(-\Delta+V)^{-\beta}, & 0 \leq \alpha \leq \beta \leq 1, \\
T_{2}=V^{\alpha} \nabla(-\Delta+V)^{-\beta}, & 0 \leq \alpha \leq 1 / 2 \leq \beta \leq 1, \quad \beta-\alpha \geq 1 / 2
\end{array}
$$

on $\mathbf{R}^{n}, n \geq 3$. We obtain weighted estimates for T_{1} and T_{2} and their boundedness on Morrey spaces.

Shen established the estimate of the fundamental solution of the Schrödinger operator by using the auxiliary function $m(x, V)$ which was introduced by himself. One of his idea is to combine the estimates of the fundamental solution with the technique of decomposing \mathbf{R}^{n} into spherical shells $\left\{x\left|2^{j-1} r<|x| \leq 2^{j} r\right\}, r=\{m(x, V)\}^{-1}\right.$, for estimating various integral operator (see [Sh, Theorem 4.13, Theorem 5.10]). We shall prove our theorems by similar methods.

As we mentioned above, for the special values of α, β, the estimate for T_{1} and T_{2} were proved in [Sh] and [KS]. For the operator T_{2}, our theorem does not cover the case $(\alpha, \beta)=(0,1 / 2)$. To prove this case Shen's advanced method is needed (see [Sh, Theorem 0.5] and its proof).

In their paper ([Sh], [KS]), the authors obtained pointwise estimates for the

