Complex Multiplication Formulae for Hyperelliptic Curves of Genus Three

Yoshihiro ÔNISHI

Iwate University
(Communicated by T. Suzuki)

Introduction.

Let $\wp(u)$ be a Weierstrass elliptic function satisfying $\wp^{\prime}(u)^{2}=4 \wp(u)^{3}-1$. Let $\zeta:=e^{2 \pi i / 3}$. Then $\wp(u)$ has a property $\wp(-\zeta u)=\zeta \wp(u)$. If b is an element of $\mathbf{Z}[\zeta]$, the integer ring generated by ζ, we have a b-multiplication formula of $\wp(u)$. If b is a prime element and $b \equiv 1 \bmod 3$, the b-multiplication formula is of the form

$$
\begin{equation*}
\wp(b u)=\frac{\wp(u)\left(\wp(u)^{\mathrm{N} b-1}+\cdots+b\right)}{\left(b \wp(u)^{(\mathbf{N} b-1) / 2}+\cdots \pm 1\right)^{2}}, \tag{0.1}
\end{equation*}
$$

and all the coefficients belong to $\mathbf{Z}[\zeta]$. (These facts seem to be already known to Eisenstein [6]). Therefore the product of the roots $\{\wp(u)\}$ except for 0 of the numerator is equal to $\pm b$, and the product of reciprocals of the roots $\{\wp(u)\}$ of the denominator is equal to b^{2}. So we have factorization of b or b^{2} in an extended integer ring of $\mathbf{Z}[\zeta]$. Analogous fact is known for a function $\wp(u)$ satisfying $\wp^{\prime}(u)^{2}=4 \wp(u)^{3}-\wp(u)$.

By using these facts essentially, the cubic and quartic Gauss sums were deeply investigated (see [12] and [13]). So it seems natural for us to expect the existence of formulae analogous to (0.1) for curves of higher genus. A remarkable formula was discovered by D . Grant for the curve of genus two defined by $y^{2}=x^{5}+1 / 4$ ([9]).

The purpose of this paper is to generalize his formula. Let C be a curve of genus $g(\geq 1)$ defined by $y^{2}=f(x)$, where $f(x)$ is a polynomial of degree $2 g+1$. Let J denote the Jacobian variety of the curve C, and $\imath: C \hookrightarrow J$ the canonical embedding. We identify J with a complex torus \mathbf{C}^{g} / Λ where Λ is a lattice of \mathbf{C}^{g}. Let $u=\left(u_{1}, \cdots, u_{g}\right)$ be the canonical coordinate system of \mathbf{C}^{g}, and $\varphi(u)$ a meromorphic function on \mathbf{C}^{g} / Λ. We assume that $\varphi(u)$ satisfies $\varphi(-u)=-\varphi(u)$, because the Abelian functions $\varphi(u)$ we treat in this paper are odd or even functions. In the below, we denote by $x(u)$ and $y(u)$ the values of x-coordinate and y-coordinate, respectively, at u such that $u \in l(C)$. Then the restriction to $\imath(C)$ of the map $u \mapsto \varphi(b u)$ gives an algebraic function. Hence $\varphi \circ \iota$ has a

