Токуо Ј. Матн. Vol. 21, No. 2, 1998

Complex Multiplication Formulae for Hyperelliptic Curves of Genus Three

Yoshihiro ÔNISHI

Iwate University (Communicated by T. Suzuki)

Introduction.

Let $\wp(u)$ be a Weierstrass elliptic function satisfying $\wp'(u)^2 = 4\wp(u)^3 - 1$. Let $\zeta := e^{2\pi i/3}$. Then $\wp(u)$ has a property $\wp(-\zeta u) = \zeta \wp(u)$. If b is an element of $\mathbb{Z}[\zeta]$, the integer ring generated by ζ , we have a b-multiplication formula of $\wp(u)$. If b is a prime element and $b \equiv 1 \mod 3$, the b-multiplication formula is of the form

(0.1)
$$\wp(bu) = \frac{\wp(u)(\wp(u)^{Nb-1} + \cdots + b)}{(b\wp(u)^{(Nb-1)/2} + \cdots \pm 1)^2},$$

and all the coefficients belong to $\mathbb{Z}[\zeta]$. (These facts seem to be already known to Eisenstein [6]). Therefore the product of the roots $\{\wp(u)\}$ except for 0 of the numerator is equal to $\pm b$, and the product of reciprocals of the roots $\{\wp(u)\}$ of the denominator is equal to b^2 . So we have factorization of b or b^2 in an extended integer ring of $\mathbb{Z}[\zeta]$. Analogous fact is known for a function $\wp(u)$ satisfying $\wp'(u)^2 = 4\wp(u)^3 - \wp(u)$.

By using these facts essentially, the cubic and quartic Gauss sums were deeply investigated (see [12] and [13]). So it seems natural for us to expect the existence of formulae analogous to (0.1) for curves of higher genus. A remarkable formula was discovered by D. Grant for the curve of genus two defined by $y^2 = x^5 + 1/4$ ([9]).

The purpose of this paper is to generalize his formula. Let C be a curve of genus $g (\geq 1)$ defined by $y^2 = f(x)$, where f(x) is a polynomial of degree 2g + 1. Let J denote the Jacobian variety of the curve C, and $\iota : C \subset J$ the canonical embedding. We identify J with a complex torus \mathbb{C}^{g}/Λ where Λ is a lattice of \mathbb{C}^{g} . Let $u = (u_1, \dots, u_g)$ be the canonical coordinate system of \mathbb{C}^{g} , and $\varphi(u)$ a meromorphic function on \mathbb{C}^{g}/Λ . We assume that $\varphi(u)$ satisfies $\varphi(-u) = -\varphi(u)$, because the Abelian functions $\varphi(u)$ we treat in this paper are odd or even functions. In the below, we denote by x(u) and y(u) the values of x-coordinate and y-coordinate, respectively, at u such that $u \in \iota(C)$. Then the restriction to $\iota(C)$ of the map $u \mapsto \varphi(bu)$ gives an algebraic function. Hence $\varphi \circ \iota$ has a

Received February 25, 1997