Токуо Ј. Матн. Vol. 22, No. 1, 1999

On Log Canonical Thresholds of Surfaces in C³

Takayasu KUWATA

University of Utah (Communicated by K. Akao)

1. Introduction.

There are some invariants to measure how singular a hypersurface is. The log canonical threshold is useful for classifying non log canonical pairs. In this paper, we will study hypersurface singularities in \mathbb{C}^n . The sigularities are not necessarily isolated.

Let f be a holomorphic function near $0 \in \mathbb{C}^n$, and let D = div(f). Then the log canonical threshold of f at 0 is defined by

 $c_0(\mathbf{C}^n, f) := \sup\{c : (\mathbf{C}^n, cD) \text{ is log canonical near } 0\}.$

We frequently write $c_0(f)$ instead of $c_0(\mathbb{C}^n, f)$, if there is no confusion. If $f \neq 0$, then we see that $0 < c_0(f) \le 1$ and $c_0(f) \in \mathbb{Q}$. The log canonical threshold $c_0(f)$ is an interesting number, because it has some equivalent definitions (See Chapter 8, 9, 10 in [4] for a detailed explanation):

1. $c_0(f) = \sup\{c : |f|^{-c} \text{ is locally } L^2 \text{ near } 0\}$

2. $c_0(f) = -$ (the largest root of the Bernstein-Sato polynomial of f).

Shokurov proposed the following conjecture in [8].

CONJECTURE. Let $\mathcal{T}_n = \{c_0(\mathbb{C}^n, f) : f \neq 0 \text{ is holomorphic near } 0 \in \mathbb{C}^n\}$. For every $n \in \mathbb{N}$, the set \mathcal{T}_n satisfies the ascending chain condition.

Shokurov proved it for the case n=2 in the paper. And this was proved for the case n=3 by Alexeev [2].

It is an interesting problem to describe \mathcal{T}_n explicitly. By Shokurov's method, we can find \mathcal{T}_2 (Lemma 3.1), but Alexeev's method is ineffective and gives us little information about \mathcal{T}_3 . So the case $n \ge 3$ is unknown. We do not even know the accumulation points of \mathcal{T}_3 .

The aim of this paper is to show the following theorem.

THEOREM. Let f be a nonzero holomorphic function near $0 \in \mathbb{C}^3$. Then all the list of $\{c_0(\mathbb{C}^3, f) \ge 5/6\}$ are as follows:

Received September 25, 1997