Hyperelliptic Quotients of Modular Curves $X_{0}(N)$

Masahiro FURUMOTO and Yuji HASEGAWA

Waseda University

(Communicated by T. Suzuki)

Introduction.

Let N be a positive integer, and let

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z}) \right\rvert\, c \equiv 0(\bmod N)\right\} .
$$

Let $X_{0}(N)$ be the modular curve which corresponds to $\Gamma_{0}(N)$. For each positive divisor N^{\prime} of N with $\left(N^{\prime}, N / N^{\prime}\right)=1$ (in which case we write $N^{\prime} \| N$), $W_{N^{\prime}}=W_{N^{\prime}}^{(N)}$ denotes the corresponding Atkin-Lehner involution on $X_{0}(N)$. (W_{1} is the identity.) It is known that the $W_{N^{\prime}}$ generate an elementary 2-abelian group, which we denote by $W(N)$. The group $W(N)$ is of order $2^{\omega(N)}$, where $\omega(N)$ is the number of distinct prime divisors of N. Furthermore, these involutions are all defined over $\mathbf{Q}: W(N) \subseteq \operatorname{Aut}_{\mathbf{Q}}\left(X_{0}(N)\right)$.

Let W^{\prime} be a subgroup of $W(N)$. Then the hyperellipticity of the quotient curve $X_{0}(N) / W^{\prime}$ has been determined for two extreme cases (i.e., for $W^{\prime}=\{1\}$ or $W(N)$).

Theorem 1 ([12]). There are nineteen values of N for which $X_{0}(N)$ is hyperelliptic, i.e., $X_{0}(N)$ is hyperelliptic if and only if

$$
N=22,23,26,28-31,33,35,37,39-41,46-48,50,59,71
$$

Theorem $2([8][6])$. Put $X_{0}^{*}(N)=X_{0}(N) / W(N)$. There are 64 values of N for which $X_{0}^{*}(N)$ is hyperelliptic.
(i) $X_{0}^{*}(N)$ is of genus two if and only if N is in the following list (57 values in total):

$$
\begin{aligned}
& 67,73,85,88,93,103,104,106,107,112, \\
& 115,116,117,121,122,125,129,133,134,135, \\
& 146,147,153,154,158,161,165,166,167,168 \text {, } \\
& 170,177,180,184,186,191,198,204,205,206, \\
& 209,213,215,221,230,255,266,276,284,285, \\
& 286,287,299,330,357,380,390 .
\end{aligned}
$$

Received June 28, 1997

Revised November 20, 1997
The second author is partially supported by Waseda University Grant for Special Research Projects 97A-166.

