Токуо J. Матн. Vol. 22, No. 1, 1999

Hyperelliptic Quotients of Modular Curves $X_0(N)$

Masahiro FURUMOTO and Yuji HASEGAWA

Waseda University (Communicated by T. Suzuki)

Introduction.

Let N be a positive integer, and let

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \mid c \equiv 0 \pmod{N} \right\}.$$

Let $X_0(N)$ be the modular curve which corresponds to $\Gamma_0(N)$. For each positive divisor N' of N with (N', N/N') = 1 (in which case we write N' || N), $W_{N'} = W_{N'}^{(N)}$ denotes the corresponding Atkin-Lehner involution on $X_0(N)$. (W_1 is the identity.) It is known that the $W_{N'}$ generate an elementary 2-abelian group, which we denote by W(N). The group W(N) is of order $2^{\omega(N)}$, where $\omega(N)$ is the number of distinct prime divisors of N. Furthermore, these involutions are all defined over $\mathbf{Q}: W(N) \subseteq \operatorname{Aut}_{\mathbf{0}}(X_0(N))$.

Let W' be a subgroup of W(N). Then the hyperellipticity of the quotient curve $X_0(N)/W'$ has been determined for two extreme cases (i.e., for $W' = \{1\}$ or W(N)).

THEOREM 1 ([12]). There are nineteen values of N for which $X_0(N)$ is hyperelliptic, i.e., $X_0(N)$ is hyperelliptic if and only if

N = 22, 23, 26, 28 - 31, 33, 35, 37, 39 - 41, 46 - 48, 50, 59, 71.

THEOREM 2 ([8] [6]). Put $X_0^*(N) = X_0(N)/W(N)$. There are 64 values of N for which $X_0^*(N)$ is hyperelliptic.

(i) $X_0^*(N)$ is of genus two if and only if N is in the following list (57 values in total):

67,	73,	85,	88,	93,	103,	104,	106,	107,	112,
115,	116,	117,	121,	122,	125,	129,	133,	134,	135,
146,	147,	153,	154,	158,	161,	165,	166,	167,	168,
170,	177,	180,	184,	186,	191,	198,	204,	205,	206,
209,	213,	215,	221,	230,	255,	266,	276,	284,	285,
286,	287,	299,	330,	357,	380,	390.			

Received June 28, 1997

Revised November 20, 1997

The second author is partially supported by Waseda University Grant for Special Research Projects 97A-166.