On p and q-Additive Functions

Yoshihisa UCHIDA

Keio University
(Communicated by Y. Maeda)

1. Introduction.

Let q be an integer greater than 1 . Let $a(n)$ be a complex-valued arithmetical function. $a(n)$ is said to be q-additive if

$$
a(n)=\sum_{i \geq 0} a\left(b_{i} q^{i}\right)
$$

for any positive integer $n=\sum_{i \geq 0} b_{i} q^{i}$ with $b_{i} \in\{0,1, \cdots, q-1\}$, and $a(0)=0$. It follows from the definition that $a(n)$ is q-additive if and only if

$$
a\left(n q^{k}+r\right)=a\left(n q^{k}\right)+a(r)
$$

for any integer $n \geq 0$ and $k \geq 0$ with $0 \leq r<q^{k} . a(n)$ is said to be q-multiplicative if

$$
a(n)=\prod_{i \geq 0} a\left(b_{i} q^{i}\right)
$$

for any positive integer n as above, and $a(0)=1 . a(n)$ is a q-multiplicative function if and only if

$$
a\left(n q^{k}+r\right)=a\left(n q^{k}\right) a(r)
$$

for any $n \geq 0$ and $k \geq 0$ with $0 \leq r<q^{k}$. If q-additive or q-multiplicative function $a(n)$ satisfies

$$
\begin{equation*}
a\left(b q^{i}\right)=a(b) \quad(b \in\{0,1, \cdots, q-1\}, i \geq 0), \tag{1}
\end{equation*}
$$

then $a(n)$ is said to be strongly q-additive or strongly q-multiplicative, respectively. We say $a(n)$ is p and q-additive if it is p-additive and also q-additive. Similarly, a p and q-multiplicative function is defined. The notion of q-additive functions and q multiplicative functions were introduced by Gel'fond [2] and Delange [1] respectively and has been investigated by many authors (eg. [3], [4], [5]).

If $a(n)$ is a q-additive or q-multiplicative function, $a(n)$ is q^{l}-additive or q^{l} -

