On a Generalization of the Conjecture of Jeśmanowicz

Nobuhiro TERAI and Kei TAKAKUWA
Ashikaga Institute of Technology and Gakushuin University
(Communicated by K. Akao)

1. Introduction.

In 1956, Sierpiński [S1] showed that the equation $3^{x}+4^{y}=5^{z}$ has only the positive integral solution $(x, y, z)=(2,2,2)$. Jeśmanowicz [J] conjectured that if a, b, c are Pythagorean numbers, i.e. positive integers satisfying $a^{2}+b^{2}=c^{2}$, then the equation $a^{x}+b^{y}=c^{z}$ has only the positive integral solution $(x, y, z)=(2,2,2)(c f$. [S2]). It has been verified that this conjecture holds for many other Pythagorean numbers (cf. $\mathrm{Lu}[\mathrm{Lu}]$, Takakuwa and Asaeda [Ta1], [Ta2], Takakuwa [Ta3], [Ta4], Adachi [A], Le [Le]).

As an analogy to this conjecture, in Terai [Te1], [Te2], [Te3] and [Te4], we proposed the following conjecture and proved it under some conditions when $p=2$, $q=2$ and r is an odd prime.

Conjecture. If a, b, c, p, q, r are fixed positive integers satisfying $a^{p}+b^{q}=c^{r}$ with $p, q, r \geq 2$ and $(a, b)=1$, then the Diophantine equation

$$
a^{x}+b^{y}=c^{z}
$$

has only the positive integral solution $(x, y, z)=(p, q, r)$.
In Terai [Te5], using a lower bound for linear forms in two logarithms, due to Laurent, Mignotte and Nesterenko [LMN], we showed the following (cf. Terai [Te4]):

Theorem A. Let l be a prime $\equiv 3(\bmod 8)<11908$. Let a, b, c be fixed positive integers satisfying $a^{2}+l b^{2}=c^{r}$ with $(a, b)=1$ and r odd ≥ 3. Suppose that

$$
a \equiv 3(\bmod 8), \quad 2 \| b, \quad\left(\frac{b}{a}\right)=-1, \quad\left(\frac{l}{a}\right)=1 \quad \text { and } \quad a \geq \lambda b
$$

where $\left(\frac{*}{*}\right)$ denotes the Jacobi symbol and

$$
\lambda=\sqrt{l}\left\{\exp \left(\frac{2}{\log l+3235}\right)-1\right\}^{-1 / 2} .
$$

