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Introduction.

Let 4 be a commutative ring with unity. For a subset E of SpecA4, we put
6y Sg= ﬂE(A\P) (Ss=4).
pe

Then Sg is a saturated multiplicatively closed set.
To an A-module M, we associate a presheaf M in the following way. By putting

2 MU)=Sg'M

for an open subset U of Spec A, we define a presheaf M of modules on SpecA. Here
M is not a sheaf in general. But the sheafification of M turns out to be the quasi-coherent
A-module M. Then we ask the question: When is the presheaf M actually a sheaf?

Noting that M is a sheaf if and only if M =M, we introduce the following three
conditions for a ring A:

(S.1) M =M for any A-module M.
(S.2) a=a for any ideal a of 4.
(S.3) A=A4.
In the previous paper, the following facts are shown (see [5]):

Fact 1. Suppose that A is a valuation ring. Then
(1) A satisfies the condition (S.3).
(ii)) (S.1)<>(S.2)<>Spec A is a noetherian topological space.

FAct 2. Let A be a Dedekind domain. Then
(S.1)<>(5.2) <> (5.3) <> the ideal class group of A is torsion.

Fact 3. Suppose that A is a unique factorization domain. Then
(1) A satisfies the condition (S.3).
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