Presheaves Associated to Modules over Subrings of Dedekind Domains

Susumu KOMOTO and Toru WATANABE

Sophia University and Josai University Junior College for Women (Communicated by K. Shinoda)

Introduction.

Let A be a commutative ring with unity. For a subset E of Spec A, we put

$$S_E = \bigcap_{\mathfrak{p} \in E} (A \setminus \mathfrak{p}) \quad (S_{\phi} = A).$$

Then S_E is a saturated multiplicatively closed set.

To an A-module M, we associate a presheaf \overline{M} in the following way. By putting

$$(2) \qquad \qquad \bar{M}(U) = S_U^{-1}M$$

for an open subset U of Spec A, we define a presheaf \overline{M} of modules on Spec A. Here \overline{M} is not a sheaf in general. But the sheafification of \overline{M} turns out to be the quasi-coherent \widetilde{A} -module \widetilde{M} . Then we ask the question: When is the presheaf \overline{M} actually a sheaf?

Noting that \overline{M} is a sheaf if and only if $\overline{M} = \widetilde{M}$, we introduce the following three conditions for a ring A:

- (S.1) $\overline{M} = \widetilde{M}$ for any A-module M.
- (S.2) $\bar{\alpha} = \tilde{\alpha}$ for any ideal α of A.
- (S.3) $\bar{A} = \tilde{A}$.

In the previous paper, the following facts are shown (see [5]):

FACT 1. Suppose that A is a valuation ring. Then

- (i) A satisfies the condition (S.3).
- (ii) $(S.1) \Leftrightarrow (S.2) \Leftrightarrow \operatorname{Spec} A$ is a noetherian topological space.

FACT 2. Let A be a Dedekind domain. Then

 $(S.1) \Leftrightarrow (S.2) \Leftrightarrow (S.3) \Leftrightarrow$ the ideal class group of A is torsion.

FACT 3. Suppose that A is a unique factorization domain. Then

(i) A satisfies the condition (S.3).