Tokyo J. Math. Vol. 23, No. 1, 2000

On the Schur Indices of the Irreducible Characters of Finite Unitary Groups

Zyozyu OHMORI

Hokkaido University of Education (Communicated by T. Nagano)

Let q be a power of a fixed prime number p. Let G be the unitary group $U(n, q^2)$ of degree n with respect to a quadratic extension $\mathbf{F}_{q^2}/\mathbf{F}_q$ (\mathbf{F}_{q^e} denotes a finite field with q^e elements). The character table of G can essentially be obtained from the character table of the general linear group GL(n, q) by a simple formal change that q is everywhere replaced by -q (Ennola conjecture [2]; V. Ennola [2], G. Lusztig and B. Srinivasan [10], R. Hotta and T. A. Springer [7], G. Lusztig, D. Kazhdan, N. Kawanaka [8]; for $n \leq 5$, the character table of G had been calculated by Ennola ([2]: n = 2, 3) and S. Nozawa ([12, 13]: n = 4, 5)). The purpose of this paper is to give some results concerning the Schur indices of the irreducible characters of G.

In the following, if χ is a complex irreducible character of a finite group and F is a field of characteristic 0, then $F(\chi)$ will denote the field generated over F by the values of χ and $m_F(\chi)$ will denote the Schur index of χ with respect to F.

Let χ be any one of the irreducible characters of G. Then the following two results are known:

THEOREM A (R. Gow [5, Theorem A]). We have $m_{\mathbf{O}}(\chi) \leq 2$.

THEOREM B ([18, Theorem 3]). For any prime number $l \neq p$, we have $m_{\mathbf{Q}_l}(\chi) = 1$.

The local index $m_{\mathbf{R}}(\chi)$ can be calculated by the method of Frobenius and Schur (see, e.g., Feit [3, pp. 20–21]): put $\nu(\chi) = (1/|G|) \cdot \sum_{g \in G} \chi(g^2)$; then $\nu(\chi) = 1$, 0 or -1; if $\nu(\chi) = 1$ or 0, then $m_{\mathbf{R}}(\chi) = 1$ and if $\nu(\chi) = -1$, then $m_{\mathbf{R}}(\chi) = 2$. But I think that when *n* is large the actual practice of this method is difficult. Of course, if $\mathbf{R}(\chi) = \mathbf{C}$, then $m_{\mathbf{R}}(\chi) = 1$. In the remark at the end of §2 of this paper we shall give, in terms of Ennola's parametrization of the irreducible characters of *G* ([2]; see §1, 1.5), a necessary and sufficient condition subject for that $\mathbf{R}(\chi) = \mathbf{R}$ or \mathbf{C} .

As to the local index $m_{\mathbf{Q}_p}(\chi)$, the following fact is implicit in [16, §3] in the case where $p \neq 2$.

Received November 20, 1997 Revised August 17, 1999