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1. Introduction.

We consider the Teichmuller space of the closed torus and the Teichm\"uller space of the
once punctured torus. It is well-known that the former can be identified with the upper half-
plane and that several coordinate systems can be introduced to the latter. This is the first part
of a series of papers in which we investigate explicit relations between these two Teichmuller
spaces. In this paper based on a correspondence of subsets of these spaces we will give an
explicit construction of a holomorphic mapping between a once punctured torus and a closed
torus.

We use throughout the convention that an element $A$ in $PSL(2, R)$ represents the M\"obius

transformation induced by $A,$ $i.e.$ ,

if $A=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in PSL(2, R)$ then $A(z)=\frac{az+b}{cz+d}$

We consider a Fuchsian group $G$ consisting of M\"obius transformations of $PSL(2, R)$ and
having the following properties: (i) $G$ is discontinuous in the upper half-plane $H$ , (ii) every
real number is a limit point for $G$ , (iii) $G$ is finitely generated.

DEFINITION 1.1. A Fuchsian group $\Gamma=\langle A,$ $B$ ) for $A,$ $B\in PSL(2, R)$ is called a
Fricke group if $A,$ $B$ are hyperbolic and $tr[B^{-1}, A^{-1}]=-2$ .

In the definition above $\Gamma=\langle A,$ $B$ ) is the free group generated by $A,$ $B$ and tr denotes the
trace of a matrix. We consider a once punctured torus which is uniformized by a Fricke group
$\Gamma$ and take a normalized form for the presentation of $\Gamma$ (see \S 5). By using the quantities
$X=trA,$ $Y=trB$ and $Z=tr$ AB, the above description of the Fricke group is characterized
by $X^{2}+Y^{2}+Z^{2}=XYZ$ and $X,$ $Y,$ $Z>2$ . Moreover, we obtain the following theorem (see
[W]).

THEOREM 1.1 (Fricke [F], Keen [K]). The Teichmuller space $\mathcal{T}_{1,1}$ of the once punc-
tured torus is the sublocus of $X^{2}+Y^{2}+Z^{2}=XYZ$ with $X,$ $Y,$ $Z>2$ .
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