On Correspondences between Once Punctured Tori and Closed Tori: Fricke Groups and Real Lattices

Ryuji ABE

Keio University

1. Introduction.

We consider the Teichmüller space of the closed torus and the Teichmüller space of the once punctured torus. It is well-known that the former can be identified with the upper halfplane and that several coordinate systems can be introduced to the latter. This is the first part of a series of papers in which we investigate explicit relations between these two Teichmüller spaces. In this paper based on a correspondence of subsets of these spaces we will give an explicit construction of a holomorphic mapping between a once punctured torus and a closed torus.

We use throughout the convention that an element A in $\operatorname{PSL}(2, \mathbf{R})$ represents the Möbius transformation induced by A, i.e.,

$$
\text { if } A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PSL}(2, \mathbf{R}) \text { then } A(z)=\frac{a z+b}{c z+d}
$$

We consider a Fuchsian group G consisting of Möbius transformations of $\operatorname{PSL}(2, \mathbf{R})$ and having the following properties: (i) G is discontinuous in the upper half-plane \mathbf{H}, (ii) every real number is a limit point for G, (iii) G is finitely generated.

Definition 1.1. A Fuchsian group $\Gamma=\langle A, B\rangle$ for $A, B \in \operatorname{PSL}(2, \mathbf{R})$ is called a Fricke group if A, B are hyperbolic and $\operatorname{tr}\left[B^{-1}, A^{-1}\right]=-2$.

In the definition above $\Gamma=\langle A, B\rangle$ is the free group generated by A, B and tr denotes the trace of a matrix. We consider a once punctured torus which is uniformized by a Fricke group Γ and take a normalized form for the presentation of Γ (see §5). By using the quantities $X=\operatorname{tr} A, Y=\operatorname{tr} B$ and $Z=\operatorname{tr} A B$, the above description of the Fricke group is characterized by $X^{2}+Y^{2}+Z^{2}=X Y Z$ and $X, Y, Z>2$. Moreover, we obtain the following theorem (see [W]).

ThEOREM 1.1 (Fricke [F], Keen [K]). The Teichmüller space $\mathcal{T}_{1,1}$ of the once punctured torus is the sublocus of $X^{2}+Y^{2}+Z^{2}=X Y Z$ with $X, Y, Z>2$.

[^0]
[^0]: Received October 20, 1998
 Revised February 8, 1999

