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0. Introduction.

Let $f$ : $(C^{n}, O)\rightarrow(C, 0)$ be an arbitrary function germ, with an isolated critical point at
zero. Let $\Delta_{1},$ $\Delta_{2},$ $\cdots$ , $\Delta_{\mu}$ be a distinguished basis of vanishing cycles in the homology group
$H_{n-1}(V_{\epsilon}; Z)\cong Z^{\mu}$ of the non-singular level manifold. With respect to such a basis the vari-
ation operator $Var$ (resp. $Var^{-1}$ ) of the singularity $f$ is represented by an upper triangular
matrix. In [5], Gusein-Zade gave the following converse result for simple singularities.

GUSEIN-ZADE THEOREM 1. Let $f$ : $(C^{n}, O)\rightarrow(C, 0)$ be one of the simple singu-
larities $A_{k},$ $D_{k},$ $E_{6},$ $E_{7}$ and $E_{8}$ and $\Delta_{1},$ $\Delta_{2},$ $\cdots$ , $\Delta_{\mu}$ be an integral basis in the homology
group $H_{n-1}$ ( $V_{\epsilon}$ ; Z) $\cong Z^{\mu}$ , in which the matrix of the operator $Var$ (resp. $Var^{-1}$ ) is upper
triangular. Then $\Delta_{1},$ $\Delta_{2},$ $\cdots$ $\Delta_{\mu}$ is a distinguished basis ofvanishing cycles.

For the proof of this, the following result for simple singularities is used which is of
interest in its own right.

GUSEIN-ZADE THEOREM 2. Let $f$ : $(C^{n}, O)\rightarrow(C, 0)$ be one of the simple singu-
larities $A_{k},$ $D_{k},$ $E_{6},$ $E_{7}$ and $E_{8}$ in an odd number of variables $n$ . For any vanishing cycle
$\Delta$ and any distinguished basis $\Delta_{1},$ $\Delta_{2},$ $\cdots$ $\Delta_{\mu}$ for $f$ , there exists a sequence of elemen-
tary substitutions, turning it into a distinguished basis $\Delta_{1}^{\prime},$ $\Delta_{2}^{\prime},$ $\cdots$ , $\Delta_{\mu}^{\prime}$ with thefirst element
$\Delta_{1}^{\prime}=\pm\Delta$ .

In [3] page 103, V. I. Amol’d et als propose as an open problem to study whether an anal-
ogous theorem to Gusein-Zade Theorem 2 is true for non-simple singularities. The purpose
of the present paper is to give a negative answer to this problem. Two distinguished bases
of vanishing cycles in the homology group $H_{n-1}$ ( $V_{\epsilon}$ ; Z) are said to be elementary equivalent
if one of the two bases can be transfered into the other by a (finite) sequence of elementary
substitutions and changing of the orientation of some of the elements of the basis. Then the
main theorem in this paper can be stated as follows.
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