# Between Lie Norm and Dual Lie Norm 

Mitsuo MORIMOTO and Keiko FUJITA

International Christian University and Saga University
(Communicated by K. Uchiyama and K. Shinoda)

## Introduction.

In August 1999, we discussed the double series expansion of holomorphic functions on the dual Lie ball ([2]). Looking at our results we conjectured that there was a series of norms between the Lie norm and the dual Lie norm.

The Lie norm $L(z)$ on $\mathbf{C}^{n}$ is defined by

$$
\begin{equation*}
L(z)=\sqrt{\|z\|^{2}+\sqrt{\|z\|^{4}-\left|z^{2}\right|^{2}}} \tag{1}
\end{equation*}
$$

where $\|z\|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\cdots+\left|z_{n}\right|^{2}, \quad z^{2}=z_{1}^{2}+z_{2}^{2}+\cdots+z_{n}^{2}$ for $z=\left(z_{1}, z_{2}, \cdots, z_{n}\right)$.
The dual Lie norm $L^{*}(z)$ is defined as follows: $L^{*}(z)=\sup \{|z \cdot \zeta| ; L(\zeta) \leq 1\}$, where $z \cdot \zeta=z_{1} \zeta_{1}+z_{2} \zeta_{2}+\cdots+z_{n} \zeta_{n}$ for $z=\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ and $\zeta=\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right) . L^{*}(z)$ has the following expression:

$$
L^{*}(z)=\sqrt{\left(\|z\|^{2}+\left|z^{2}\right|\right) / 2}=\frac{1}{2}\left(L(z)+\frac{\left|z^{2}\right|}{L(z)}\right)
$$

Noting $\left|z^{2}\right| / L(z)=\sqrt{\|z\|^{2}-\sqrt{\|z\|^{4}-\left|z^{2}\right|^{2}}}$, we can write

$$
\begin{equation*}
L^{*}(z)=\frac{1}{2}\left(\sqrt{\|z\|^{2}+\sqrt{\|z\|^{4}-\left|z^{2}\right|^{2}}}+\sqrt{\|z\|^{2}-\sqrt{\|z\|^{4}-\left|z^{2}\right|^{2}}}\right) \tag{2}
\end{equation*}
$$

(see [1] and [5]).
For $p \geq 1$, we define the function $N_{p}(z)$ on $\mathbf{C}^{n}$ as follows:

$$
N_{p}(z)=\left\{\frac{1}{2}\left(\left(\|z\|^{2}+\sqrt{\|z\|^{4}-\left|z^{2}\right|^{2}}\right)^{p / 2}+\left(\|z\|^{2}-\sqrt{\|z\|^{4}-\left|z^{2}\right|^{2}}\right)^{p / 2}\right)\right\}^{1 / p}
$$

It is clear that $N_{2}(z)$ is equal to the Euclidean norm $\|z\|$. We have $N_{1}(z)=L^{*}(z)$ by $(2)$ and $\lim _{p \rightarrow \infty} N_{p}(z)=L(z)$ by (1). If $n=2$, then $N_{p}(z)$ is equivalent to the Lebesgue $L^{p}$ norm (see (5)).

