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Introduction.

In August 1999, we discussed the double series expansion of holomorphic functions on
the dual Lie ball ([2]). Looking at our results we conjectured that there was a series of norms
between the Lie norm and the dual Lie norm.

The Lie norm $L(z)$ on $C^{n}$ is defined by

$L(z)=\sqrt{||z||^{2}+\sqrt{||z||^{4}-|z^{2}|^{2}}}$ , (1)

where $\Vert z\Vert^{2}=|z_{1}|^{2}+|z_{2}|^{2}+\cdots+|z_{n}|^{2}$ , $z^{2}=z_{1}^{2}+z_{2}^{2}+\cdots+z_{n}^{2}$ for $z=$ $(Z1, Z2, , z_{n})$ .
The dual Lie norm $L^{*}(z)$ is defined as follows: $L^{*}(z)=\sup\{|z\cdot\zeta|;L(\zeta)\leq 1\}$ , where

$z\cdot\zeta=z_{1}\zeta_{1}+z_{2}\zeta_{2}+\cdots+z_{n}\zeta_{n}$ for $z=$ $(Z1, Z2, , z_{n})$ and $\zeta=(\zeta_{1}, \zeta_{2}, \cdots \zeta_{n})$ . $L^{*}(z)$ has
the following expression:

$L^{*}(z)=\sqrt{(\Vert z\Vert^{2}+|z^{2}|)/2}=\frac{1}{2}(L(z)+\frac{|z^{2}|}{L(z)})$ .

Noting $|z^{2}|/L(z)=\sqrt{\Vert z\Vert^{2}-\sqrt{\Vert z\Vert^{4}-|z^{2}|^{2}}}$ , we can write

(2)

(see [1] and [5]).
For $p\geq 1$ , we define the function $N_{p}(z)$ on $C^{n}$ as follows:

$N_{p}(z)=t\frac{1}{2}((||z\Vert^{2}+\sqrt{\Vert z\Vert^{4}-|z^{2}|^{2}})^{p/2}+(||z||^{2}-\sqrt{\Vert z||^{4}-|z^{2}|^{2}})^{p/2})\}^{1/p}$

It is clear that $N_{2}(z)$ is equal to the Euclidean norm $\Vert z\Vert$ . We have $N_{1}(z)=L^{*}(z)$ by (2) and
$\lim_{p\rightarrow\infty}N_{p}(z)=L(z)$ by (1). If $n=2$ , then $N_{p}(z)$ is equivalent to the Lebesgue $L^{p}$ norm
(see (5)).
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