Tokyo J. Math. Vol. 24, No. 2, 2001

Between Lie Norm and Dual Lie Norm

Mitsuo MORIMOTO and Keiko FUJITA

International Christian University and Saga University

(Communicated by K. Uchiyama and K. Shinoda)

Introduction.

In August 1999, we discussed the double series expansion of holomorphic functions on the dual Lie ball ([2]). Looking at our results we conjectured that there was a series of norms between the Lie norm and the dual Lie norm.

The Lie norm L(z) on \mathbb{C}^n is defined by

$$L(z) = \sqrt{\|z\|^2 + \sqrt{\|z\|^4 - |z^2|^2}},$$
(1)

where $||z||^2 = |z_1|^2 + |z_2|^2 + \dots + |z_n|^2$, $z^2 = z_1^2 + z_2^2 + \dots + z_n^2$ for $z = (z_1, z_2, \dots, z_n)$. The dual Lie norm $L^*(z)$ is defined as follows: $L^*(z) = \sup\{|z \cdot \zeta|; L(\zeta) \le 1\}$, where

The dual Lie norm $L^{-}(z)$ is defined as follows. $L^{-}(z) = \sup\{z : \zeta\}, L(\zeta) \le i_{j}$, where $z \cdot \zeta = z_{1}\zeta_{1} + z_{2}\zeta_{2} + \cdots + z_{n}\zeta_{n}$ for $z = (z_{1}, z_{2}, \cdots, z_{n})$ and $\zeta = (\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n})$. $L^{*}(z)$ has the following expression:

$$L^{*}(z) = \sqrt{(||z||^{2} + |z^{2}|)/2} = \frac{1}{2} \left(L(z) + \frac{|z^{2}|}{L(z)} \right).$$

Noting $|z^2|/L(z) = \sqrt{||z||^2 - \sqrt{||z||^4 - |z^2|^2}}$, we can write

$$L^{*}(z) = \frac{1}{2} \left(\sqrt{\|z\|^{2} + \sqrt{\|z\|^{4} - |z^{2}|^{2}}} + \sqrt{\|z\|^{2} - \sqrt{\|z\|^{4} - |z^{2}|^{2}}} \right)$$
(2)

(see [1] and [5]).

For $p \ge 1$, we define the function $N_p(z)$ on \mathbb{C}^n as follows:

$$N_p(z) = \left\{ \frac{1}{2} \left((\|z\|^2 + \sqrt{\|z\|^4 - |z^2|^2})^{p/2} + (\|z\|^2 - \sqrt{\|z\|^4 - |z^2|^2})^{p/2} \right) \right\}^{1/p}$$

It is clear that $N_2(z)$ is equal to the Euclidean norm ||z||. We have $N_1(z) = L^*(z)$ by (2) and $\lim_{p\to\infty} N_p(z) = L(z)$ by (1). If n = 2, then $N_p(z)$ is equivalent to the Lebesgue L^p norm (see (5)).

Received July 10, 2000