Токуо J. Матн. Vol. 32, No. 1, 2009

Abelian Number Fields Satisfying the Hilbert-Speiser Condition at p = 2 or 3

Yusuke YOSHIMURA

Ibaraki University

(Communicated by T. Kawasaki)

1. Introduction

Let *F* be a number field and \mathcal{O}_F the ring of integers of *F*. Let N/F be a finite Galois extension with group *G*. We say that N/F has a normal integral basis (NIB for short) when \mathcal{O}_N is cyclic over the group ring $\mathcal{O}_F[G]$. Hilbert and Speiser proved that any finite tame abelian extension of the rationals **Q** has a NIB. Let *p* be a prime number. We say that *F* satisfies the condition (H_p) when any tame cyclic extension N/F of degree *p* has a NIB. As mentioned above, **Q** satisfies (H_p) for any prime number *p*. On the other hand, Greither *et al.*[4] proved that any number field $F \neq \mathbf{Q}$ does not satisfy (H_p) for infinitely many *p*. So, it is of interest to determine which number field satisfies (H_p) or not. All imaginary quadratic fields satisfying (H_2) were determined by Carter [1]. There are exactly 3 such fields. All quadratic fields satisfying (H_2) and all abelian fields satisfying (H_3) . We obtained the following result.

THEOREM.

- (I) Among all imaginary abelian fields F with $[F : \mathbf{Q}] \ge 3$, there exist exactly 14 fields satisfying (H_2) , which are given in Table 1 at the end of this paper.
- (II) Among all abelian fields F with $[F : \mathbf{Q}] \ge 3$, there exist exactly 15 fields satisfying (H_3) , which are given in Table 2.

2. Lemmas

Let *F* be a number field. For an integer $a \in \mathcal{O}_F$, let $Cl_F(a)$ be the ray class group of *F* defined modulo the ideal $(a) = a\mathcal{O}_F$. In particular, $Cl_F = Cl_F(1)$ is the absolute class group

Received April 3, 2008; revised September 18, 2008