Токуо J. Матн. Vol. 25, No. 1, 2002

Linear Topologies on a Field and Completions of Valuation Rings

Koji SEKIGUCHI

Kochi University of Technology

(Communicated by K. Shinoda)

Introduction.

For an integral local ring A, we consider the linear topology on QA with fundamental system of neighborhoods of 0:

$$\Sigma_A = \{a\mathfrak{m}(A) \mid a \in A, a \neq 0\}.$$

This topology is said to be the A-topology on QA. Here QA is the quotient field of A and $\mathfrak{m}(A)$ is the unique maximal ideal of A. In general, the A-topology is stronger than the $\mathfrak{m}(A)$ -adic topology.

For an integral local ring A, we consider the completion

$$\hat{A} = \operatorname{proj.lim} A/\mathfrak{a} \quad (\mathfrak{a} \in \Sigma_A)$$

with respect to the A-topology.

In this paper we shall study the fundamental properties of the completion \hat{A} of an integral local ring A with respect to the A-topology and show some related examples. The A-topology and the completion \hat{A} are very important conceptions for a valuation ring A, especially in the case that A is not noetherian. The main results are as follows:

THEOREM 1. Let A be an integral local ring. Then

A is a valuation ring $\Leftrightarrow \hat{A}$ is a valuation ring.

Moreover, if A is a valuation ring, then the residue field of \hat{A} is isomorphic to the residue field of A and the value group of \hat{A} is isomorphic to the value group of A.

For a field *K* and a subring *A* of *K*, let Zar(K|A) denote the set of valuation rings of *K* which contain *A*. Then the set Zar(K|A) has a structure of local ringed spaces (see [4, §1]).

THEOREM 2. Suppose that A is a valuation ring.

Received March 13, 2001