Токуо J. Матн. Vol. 25, No. 2, 2002

On the Embedded Eigenvalues for the Self-Adjoint Operators with Singular Perturbations

Kazuo WATANABE

Gakushuin University

(Communicated by T. Kawasaki)

1. Introduction and assumptions.

This paper is a continuation of [7]. That is, in the framework of the \mathcal{H}_{-2} -construction we consider a finite rank perturbation of a self-adjoint operator H_0 without assuming semiboundedness for H_0 . The \mathcal{H}_{-2} -construction has been developed by A. Kiselev and B. Simon [1], S. T. Kuroda and H. Nagatani [2], [3] and have been applied to Schrödinger operators with a singular perturbation by H. Nagatani [4] and S. Shimada [6].

In this paper we consider the embedded eigenvalues of H_T and the existence of the wave operator $W_{\pm}(H_0, H_T)$. We prepare some notations. Let \mathcal{H} be a Hilbert space with the inner product $\langle \cdot, \cdot \rangle$, H_0 a self-adjoint operator in \mathcal{H} and $R_0(z) = (H_0 - z)^{-1}$ (Im $z \neq 0$). We put $\mathcal{H}_s := \{u \in \mathcal{H}; \|(|H_0| + 1)^{s/2}u\| < \infty\}$ for $s \ge 0$, and $\mathcal{H}_s := (\mathcal{H}_{-s})^*$ for s < 0. Remark that $\mathcal{H}_s \subset \mathcal{H} \subset \mathcal{H}_{-s}$ for $s \ge 0$. For simplicity we use the same symbol $\langle \cdot, \cdot \rangle$ for the dual coupling $\langle \cdot, \cdot \rangle_{s,-s}$ of \mathcal{H}_s and \mathcal{H}_{-s} ($s \in \mathbf{R}$), and regard the operator $R_0(z)$ with Im $z \neq 0$ as the element of $\mathcal{L}(\mathcal{H}, \mathcal{H}) \cap \mathcal{L}(\mathcal{H}_s, \mathcal{H}_{s+2})$ for Im $z \neq 0$.

DEFINITION. Define

$$W(z) = W(z, i) = (z - i)R_0(z)R_0(i)$$

and the operator $R_T(z)$ in \mathcal{H}

$$R_T(z) = R_0(z) - R_0(z)(1 + TW(z))^{-1}TR_0(z), \quad \text{Im} \, z \neq 0.$$
⁽¹⁾

To define the self-adjoint operator H_T for $T \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_{-2})$ we use the following theorem (cf. [3]).

THEOREM 1.1 ([3]). If
$$T \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_{-2})$$
 satisfies

$$T - T^* = TW(-i, i)T^* = T^*W(-i, i)T, \qquad (2)$$

$$u - T R_0(i)u = 0, \quad u \in \mathcal{H}_0 \Rightarrow u = 0,$$
 (3)

Received December 20, 2001