Токуо J. Матн. Vol. 26, No. 1, 2003

Positive Foliations on Compact Complex Manifolds

Edoardo BALLICO

University of Trento

(Communicated by R. Miyaoka)

1. Introduction

We recall the following definition of singular meromorphic foliation.

DEFINITION 1.1. Let X be a smooth complex compact *n*-dimensional manifold. A dimension q, $1 \le q < n$, singular meromorphic foliation on X is defined by a rank q subsheaf E of the tangent bundle TX of X such that TX/E has no torsion and E is involutive, i.e. E is closed under Lie brackets.

If q = 1 (i.e. if the foliation is a foliation by curves) then the condition of involutiveness is automatically satisfied and E is a line bundle ([H], Prop. 1.9). The sheaf E is called the tangent sheaf to the leaves of the foliation. In this paper we study positive singular meromorphic foliations, mainly in the case in which X has a fibration.

DEFINITION 1.2. Let X be a smooth complex compact *n*-dimensional manifold and F a dimension $q, 1 \le q < n$, singular meromorphic foliation on X defined by an exact sequence

$$0 \to E \to TX \to TX/E \to 0 \tag{1}$$

with *E* involutive, rank(E) = q, and TX/E torsion free.

(a) We will say that *F* is *effective* or *non-negative* if the coherent sheaf *E* is generically spanned by its global sections, i.e. there is a non-empty open subset *U* of *X* such that the natural map $H^0(X, E) \otimes O_X \to E$ is surjective at every point of *U*.

(b) We will say that F is *semi-positive* if we may take as U a Zariski open subset of X such that $X \setminus U$ is a closed analytic subset of X with codimension at least two.

(c) Assume q = 1. Then we will say that *F* is *strictly generically positive* if $h^0(X, E) \ge 2$ and the base locus of *E* has codimension at least two in *X* and we will say that *E* is *strictly generically effective* if $h^0(X, E) \ge 2$.

We need to use some kind of positivity for torsion-free coherent sheaves on compact complex manifolds.

Received July 3, 2001; revised June 3, 2002