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1. Introduction

We recall the following definition of singular meromorphic foliation.

DEFINITION 1.1. Let X be a smooth complex compact n-dimensional manifold. A
dimension q, 1 ≤ q < n, singular meromorphic foliation on X is defined by a rank q subsheaf
E of the tangent bundle T X of X such that T X/E has no torsion and E is involutive, i.e. E

is closed under Lie brackets.
If q = 1 (i.e. if the foliation is a foliation by curves) then the condition of involutiveness

is automatically satisfied and E is a line bundle ([H], Prop. 1.9). The sheaf E is called the tan-
gent sheaf to the leaves of the foliation. In this paper we study positive singular meromorphic
foliations, mainly in the case in which X has a fibration.

DEFINITION 1.2. Let X be a smooth complex compact n-dimensional manifold and
F a dimension q, 1 ≤ q < n, singular meromorphic foliation on X defined by an exact
sequence

0 → E → T X → T X/E → 0 (1)

with E involutive, rank(E) = q , and T X/E torsion free.
(a) We will say that F is effective or non-negative if the coherent sheaf E is generically

spanned by its global sections, i.e. there is a non-empty open subset U of X such that the

natural map H 0(X,E) ⊗ OX → E is surjective at every point of U .
(b) We will say that F is semi-positive if we may take as U a Zariski open subset of X

such that X \ U is a closed analytic subset of X with codimension at least two.

(c) Assume q = 1. Then we will say that F is strictly generically positive if h0(X,E) ≥
2 and the base locus of E has codimension at least two in X and we will say that E is strictly

generically effective if h0(X,E) ≥ 2.
We need to use some kind of positivity for torsion-free coherent sheaves on compact

complex manifolds.
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