Токуо J. Матн. Vol. 26, No. 2, 2003

On an Airy Function of Two Variables II

Tadashi MIYAMOTO

Keio University

(Communicated by A. Tani)

0. Introduction

Consider an integral of the form

$$z_C(x, y) = \int_C \exp\left(-\frac{t^4}{4} + \frac{xt^2}{2} + yt\right) dt, \qquad (0.1)$$

where x and y are complex variables. Here C is a path of integration such that the integrand vanishes at its terminal points. The Airy function

$$u(x) = \int_C \exp\left(-\frac{t^3}{3} - tx\right) dt$$

may be regarded as a confluent type of the Gauss hypergeometric function $F(\alpha, \beta, \gamma, x)$ ([3]). There exists an analogous relation between (0.1) and the Appell hypergeometric function $F_1(\alpha, \beta, \beta', \gamma, x, y)$ ([2]). The function (0.1) is called Pearcey's integral or an Airy function of two variables (cf.[4]). The integral $z_C(x, y)$ satisfies a system of partial differential equations of the form

$$\partial_{x}^{2} u = \frac{x}{2} \partial_{x} u + \frac{y}{4} \partial_{y} u + \frac{1}{4} u,$$

$$\partial_{x} \partial_{y} u = \frac{x}{2} \partial_{y} u + \frac{y}{4} u,$$

$$\partial_{y}^{2} u = 2 \partial_{x} u,$$

(0.2)

whose solutions constitute a 3-dimensional vector space over C (cf.[2]). This system is equivalent to

$$dV = (P(x, y)dx + Q(x, y)dy)V$$
(0.3)

Received December 25, 2002