Токуо J. Матн. Vol. 26, No. 2, 2003

Dedekind Sums with Roots of Unity and Their Reciprocity Law

Chizuru SEKINE

Tsuda College

(Communicated by S. Fukuhara)

1. Introduction

For positive integers k and h with gcd(k, h) = 1, the classical Dedekind sum s(k, h) is defined by

$$s(k,h) = \sum_{a=1}^{h-1} \bar{B}_1\left(\frac{a}{h}\right) \bar{B}_1\left(\frac{ka}{h}\right),$$

where $\bar{B}_1(x)$ is the first Bernoulli function. For x real, the *n*-th Bernoulli function $\bar{B}_n(x)$ is defined by

$$\bar{B}_n(x) = B_n(\{x\}) \quad \text{if } n > 1 \quad \text{and} \quad \bar{B}_1(x) = \begin{cases} B_1(\{x\}) & \text{if } x \notin \mathbb{Z} \\ 0 & \text{if } x \in \mathbb{Z} \end{cases},$$

where $\{x\}$ denotes the fractional part of x. The most famous property of Dedekind sum is the reciprocity law

$$s(k,h) + s(h,k) = \frac{1}{12} \left(\frac{k}{h} + \frac{h}{k} + \frac{1}{kh} \right) - \frac{1}{4}$$

(see [6]). Various people generalized this sum and obtained their reciprocity laws.

In [5] we focused on Apostol's generalized sum

$$s_n(k,h) = \sum_{a=1}^{h-1} \frac{a}{h} \bar{B}_n\left(\frac{ka}{h}\right),$$

Received November 20, 2002; revised June 12, 2003