Токуо J. Матн. Vol. 27, No. 1, 2004

A Formula for the A-Polynomials of (-2, 3, 1+2n)-Pretzel Knots

Naoko TAMURA and Yoshiyuki YOKOTA

Tokyo Metropolitan University

1. Introduction

Let *M* be a compact 3-manifold such that ∂M is a torus and $\{\lambda, \mu\}$ a basis of $\pi_1(\partial M)$. Then $R = \text{Hom}(\pi_1(M), \text{SL}(2, \mathbb{C}))$ is an affine algebraic variety. Let R_U be the set of representations $\rho \in R$ such that

$$\rho(\lambda) = \left(\begin{array}{cc} l & * \\ 0 & 1/l \end{array}\right) \qquad \rho(\mu) = \left(\begin{array}{cc} m & * \\ 0 & 1/m \end{array}\right)$$

for some $l, m \in \mathbb{C}$. Note that any element of R can be conjugated to such a representation because λ and μ are commutative and that the Zariski closure of the image of the eigenvalue map $\xi : R_U \to \mathbb{C}^2$ defined by $\xi(\rho) = (l, m)$ is an algebraic subset of \mathbb{C}^2 . Let C_1, C_2, \dots, C_k be the one-dimensional components of the closure of $\xi(R_U)$ and $g_1(l, m), g_2(l, m), \dots$, $g_k(l, m) \in \mathbb{Z}[l, m]$ their defining polynomials which are supposed to be reduced. Then, the *A*-polynomial of *M* is defined by

$$A_M(l,m) = g_1(l,m)g_2(l,m)\cdots g_k(l,m).$$

When *M* is the complement of a knot *K* in S^3 , we choose $\{\lambda, \mu\}$ as the pair of the preferred longitude and the meridian of *K*. Then, the *A*-polynomial always has a factor l - 1, and so we shall compute $A_K(l, m) = A_M(l, m)/(l - 1)$.

In the study of knot theory, the polynomial invariants, such as Alexander and Jones polynomials, are very much useful and have been evaluated for a large number of knots. However, the *A*-polynomials have been computed for only some simple knots, see [1]. In particular, except for torus knots, there had been no formulae for the *A*-polynomials of infinite series of knots until Hoste and Shanahan found formulae for two infinite families of 2-bridge knots, including twist knots, in [3].

Inspired by [3], in this paper, we will derive a formula for the A-polynomials of the (-2, 3, 1 + 2n)-pretzel knots. Let K_n denote the (-2, 3, 1 + 2n)-pretzel knot depicted in Figure 1, where *n* is the number of left-handed full twists contained in the box. Note that

Received July 17, 2003; revised August 28, 2003