A Formula for the A-Polynomials of ($-2,3,1+2 n$)-Pretzel Knots

Naoko TAMURA and Yoshiyuki YOKOTA

Tokyo Metropolitan University

1. Introduction

Let M be a compact 3-manifold such that ∂M is a torus and $\{\lambda, \mu\}$ a basis of $\pi_{1}(\partial M)$. Then $R=\operatorname{Hom}\left(\pi_{1}(M), \operatorname{SL}(2, \mathbf{C})\right)$ is an affine algebraic variety. Let R_{U} be the set of representations $\rho \in R$ such that

$$
\rho(\lambda)=\left(\begin{array}{cc}
l & * \\
0 & 1 / l
\end{array}\right) \quad \rho(\mu)=\left(\begin{array}{cc}
m & * \\
0 & 1 / m
\end{array}\right)
$$

for some $l, m \in \mathbf{C}$. Note that any element of R can be conjugated to such a representation because λ and μ are commutative and that the Zariski closure of the image of the eigenvalue $\operatorname{map} \xi: R_{U} \rightarrow \mathbf{C}^{2}$ defined by $\xi(\rho)=(l, m)$ is an algebraic subset of \mathbf{C}^{2}. Let $C_{1}, C_{2}, \cdots, C_{k}$ be the one-dimensional components of the closure of $\xi\left(R_{U}\right)$ and $g_{1}(l, m), g_{2}(l, m), \cdots$, $g_{k}(l, m) \in \mathbf{Z}[l, m]$ their defining polynomials which are supposed to be reduced. Then, the A-polynomial of M is defined by

$$
A_{M}(l, m)=g_{1}(l, m) g_{2}(l, m) \cdots g_{k}(l, m)
$$

When M is the complement of a knot K in S^{3}, we choose $\{\lambda, \mu\}$ as the pair of the preferred longitude and the meridian of K. Then, the A-polynomial always has a factor $l-1$, and so we shall compute $A_{K}(l, m)=A_{M}(l, m) /(l-1)$.

In the study of knot theory, the polynomial invariants, such as Alexander and Jones polynomials, are very much useful and have been evaluated for a large number of knots. However, the A-polynomials have been computed for only some simple knots, see [1]. In particular, except for torus knots, there had been no formulae for the A-polynomials of infinite series of knots until Hoste and Shanahan found formulae for two infinite families of 2-bridge knots, including twist knots, in [3].

Inspired by [3], in this paper, we will derive a formula for the A-polynomials of the $(-2,3,1+2 n)$-pretzel knots. Let K_{n} denote the $(-2,3,1+2 n)$-pretzel knot depicted in Figure 1, where n is the number of left-handed full twists contained in the box. Note that

[^0]
[^0]: Received July 17, 2003; revised August 28, 2003

