On the Interval Maps Associated to the α-mediant Convergents

Rie NATSUI
Keio University
(Communicated by Y. Maeda)

1. Introduction

For an irrational number $x \in(0,1)$, if a non-zero rational number $\frac{p}{q},(p, q)=1$, satisfies $\left|x-\frac{p}{q}\right|<\frac{1}{2 q^{2}}$, then it is the nth regular principal convergent $\frac{p_{n}}{q_{n}}$ for some $n \geq 1$. Here, the nth regular principal convergents are defined by the regular continued fraction expansion of x :

$$
x=\frac{1 \mid}{\mid a_{1}}+\frac{1 \mid}{\mid a_{2}}+\frac{1 \mid}{\mid a_{3}}+\cdots .
$$

We put

$$
\begin{cases}p_{-1}=p_{-1}(x)=1, & p_{0}=p_{0}(x)=0 \\ q_{-1}=q_{-1}(x)=0, & q_{0}=q_{0}(x)=1\end{cases}
$$

and

$$
\left\{\begin{array}{l}
p_{n}=p_{n}(x)=a_{n} \cdot p_{n-1}+p_{n-2} \\
q_{n}=q_{n}(x)=a_{n} \cdot q_{n-1}+q_{n-2}
\end{array} \quad \text { for } \quad n \geq 1\right.
$$

Then it is well-known that

$$
\frac{p_{n}}{q_{n}}=\frac{1 \mid}{\mid a_{1}}+\frac{1 \mid}{\mid a_{2}}+\cdots+\frac{1 \mid}{\mid a_{n}} \quad \text { for } \quad n \geq 1
$$

If $x \in[k, k+1)$ for an integer k, we define its nth regular principal convergent by $\frac{p_{n}(x-k)}{q_{n}(x-k)}+k=\frac{p_{n}(x-k)+k \cdot q_{n}(x-k)}{q_{n}(x-k)}$.

Received March 3, 2003; revised May 6, 2003
2002 Mathematics Subject Classification. 11J70, 11K50

