Токуо J. Матн. Vol. 27, No. 2, 2004

On a Theorem of Kawamoto on Normal Bases of Rings of Integers

Humio ICHIMURA

Yokohama City University

(Communicated by T. Kawasaki)

1. Introduction

A finite Galois extension L/K over a number field K has a relative normal integral basis (NIB for short) when \mathcal{O}_L is free over the group ring $\mathcal{O}_K[\text{Gal}(L/K)]$. Here, \mathcal{O}_L (resp. \mathcal{O}_K) is the ring of integers of L (resp. K). It is well known by Noether that if L/K has a NIB, then L/K is tame (i.e., at most tamely ramified at all finite prime divisors). It is also well known by Hilbert and Speiser that when the base field K equals the rationals \mathbf{Q} , all tame abelian extensions L/\mathbf{Q} have a NIB. Recently, Greither et al. [3] proved that there exists no Hilbert-Speiser number field other than \mathbf{Q} . Namely, they proved that when $K \neq \mathbf{Q}$, there exist a prime number p and a tame cyclic extension L/K of degree p having no NIB.

On the other hand, Kawamoto [7, 8] obtained the following result. For a prime number p, let ζ_p be a fixed primitive p-th root of unity.

THEOREM 1 (Kawamoto). For a prime number p and a rational number $a \in \mathbf{Q}^{\times}$, the cyclic extension $\mathbf{Q}(\zeta_p, a^{1/p})/\mathbf{Q}(\zeta_p)$ has a NIB if it is tame.

In [2, Theorem 2.1], Gómez Ayala gave a necessary and sufficient condition for a tame Kummer extension of prime degree to have a NIB, and deduced Theorem 1 from this criterion. For a prime number p, we say that a number field F enjoys the property (H_p) when for any element $a \in F^{\times}$, the cyclic extension $F(\zeta_p, a^{1/p})/F(\zeta_p)$ has a NIB if it is tame. Theorem 1 says that the rationals **Q** satisfies the property (H_p) for all p. Analogous to the result of Greither et al., it is shown in [5, IV] that when $F \neq \mathbf{Q}$, there exists a prime number p for which F does not satisfy (H_p) . For a prime number p and a number field F with $\zeta_p \in F^{\times}$, we gave, in [5, V, Propositions 1, 2], a necessary and sufficient condition for (H_p) to be satisfied.

Received August 5, 2003; revised November 20, 2003

The author was partially supported by Grant-in-Aid for Scientific Research (C), (No. 16540033), the Ministry of Education, Culture, Sports, Science and Technology of Japan.