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Introduction

Let (M, g) be a Riemannian manifold. We denote by Gp(TmM) the Grassmann manifold
of all oriented p-dimensional linear subspaces of the tangent space TmM of M at m ∈ M and
by Gp(T M) the Grassmann bundle

⋃
m∈M Gp(TmM). Let V be a subbundle of Gp(T M).

A p-dimensional submanifold N of M is called a V -submanifold if TmN ∈ V holds for any
m ∈ N . If a Lie group G acts on M , the action is naturally extended to the action of G on
Gp(T M). It seems to be an interesting problem to study V -submanifold for an orbit V of an
action of G on Gp(T M).

Let J be the standard almost complex structure of the 6-dimensional sphere S6 and
〈, 〉 the standard Riemannian metric. It is well-known that the group of automorphisms of

(S6, J, 〈, 〉) is isomorphic to the compact exceptional simple Lie group G2. The complex

volume form ω of the tangent space TmS6 at m ∈ S6 is extended to a G2-invariant (complex)

3-form on S6. For a complex number κ (|κ | ≤ 1), we put

Vκ = {ξ ∈ G3(T S6) : ω(ξ) = κ} .

A 2-dimensional submanifold ϕ : M2 → S6 is said to be a J -holomorphic curve if
J (dϕ(TmM)) = dϕ(TmM) holds for all m ∈ M . Bryant [1] showed that for any Riemann

surface M there exists a superminimal J -holomorphic curve ϕ : M → S6 which has no
geodesic point. In this note we study whether a tube over a J -holomorphic curve (in the
direction of first or second) normal space is a Vκ -submanifold or not. In the case of tubes in
the direction of second normal space, we shall prove the following

THEOREM 1. Let ϕ : M2 → S6 be a J -holomorphic curve without geodesic point. If
a tube ϕ̃2,γ over ϕ of radius γ is a Vκ -submanifold, then one of the following holds

(i) γ = π/2 and κ = 1,
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