Токуо J. Матн. Vol. 28, No. 2, 2005

Spectral Geometry of Kähler Hypersurfaces in a Complex Grassmann Manifold

Yoichiro MIYATA

Tokyo Metropolitan University (Communicated by Y. Ohnita)

1. Introduction

Let *M* be a compact C^{∞} -Riemannian manifold, $C^{\infty}(M)$ the space of all smooth functions on *M*, and Δ the Laplacian on *M*. Then Δ is a self-adjoint elliptic differential operator acting on $C^{\infty}(M)$, which has an infinite discrete sequence of eigenvalues:

$$Spec(M) = \{0 = \lambda_0 < \lambda_1 < \lambda_2 < \dots < \lambda_k < \dots \uparrow \infty\}.$$

Let $V_k = V_k(M)$ be the eigenspace of Δ corresponding to the *k*-th eigenvalue λ_k . Then V_k is finite-dimensional. We define an inner product $(,)_{L^2}$ on $C^{\infty}(M)$ by

$$(f, g)_{L^2} = \int_M f g \, dv_M$$

where dv_M denotes the volume element on M. Then $\sum_{t=0}^{\infty} V_t$ is dense in $C^{\infty}(M)$ and the decomposition is orthogonal with respect to the inner product $(,)_{L^2}$. Thus we have

$$C^{\infty}(M) = \sum_{t=0}^{\infty} V_t(M)$$
 (in L^2 -sense).

Since M is compact, V_0 is the space of all constant functions which is 1-dimensional.

In this point of view, it is one of the simplest and the most interesting problems to estimate the first eigenvalue. In [13], A. Ros gave the following sharp upper bound for the first eigenvalue of Kähler submanifold of a complex projective space.

THEOREM 1.1. Suppose that M is a complex m-dimensional compact Kähler submanifold of the complex projective space $\mathbb{C}P^n$ of constant holomorphic sectional curvature c. Then the first eigenvalue λ_1 satisfies

$$\lambda_1 \leq c(m+1) \, .$$

Received March 2, 2004