TOKYO J. MATH. Vol. 2, No. 1, 1979

The Class Group of the Rees Algebras over Polynomial Rings

Yasuhiro SHIMODA

Tokyo Metropolitan University

Introduction

Let A be a commutative ring with unit element and let A[X]denote a polynomial ring over A with an indeterminate X. For an ideal a of A we put $\mathscr{R}(A, a) = A[\{aX; a \in a\}, X^{-1}]$, the A-subalgebra of $A[X, X^{-1}]$ generated by $\{aX; a \in a\}$ and X^{-1} , and we call it the Rees algebra of a over A.

 $\mathscr{R}(A, \mathfrak{a})$ is a graded subring of $A[X, X^{-1}]$, whose graduation is given by $\mathscr{R}_n(A, \mathfrak{a}) = \mathfrak{a}^n X^n$ for $n \ge 0$ and $\mathscr{R}_n(A, \mathfrak{a}) = A$ for n < 0. Note that $\mathscr{R}(A, \mathfrak{a})$ is canonically identified with the ring $\bigoplus_{n \in \mathbb{Z}} \mathfrak{a}^n$ where $\mathfrak{a}^n = A$ for n < 0.

The aim of this paper is to prove the following theorem.

THEOREM. Let k be a Krull domain and let W_1, \dots, W_s be indeterminates over k. Then, for every positive integer $n, \mathscr{R}(k[W_1, \dots, W_s], (W_1, \dots, W_s)^n)$ is a Krull domain and $C(\mathscr{R}) = C(k) \bigoplus Z/nZ$. (Here $C(\cdot)$ denotes the divisor class group.)

By the theorem we have the following result immediately.

COROLLARY. If k is a field, then $\mathscr{R}(k[W_1, \dots, W_s], (W_1, \dots, W_s)^n)$ is a Macaulay normal domain and $C(\mathscr{R}) = Z/nZ$.

§1. Proof of Theorem.

Let k, W_1, \dots, W_s , n be as in the introduction and let $X^{-1} = U$. We denote $\mathscr{R}(k[W_1, \dots, W_s], (W_1, \dots, W_s)^n)$ by T. Let Λ_n be the set of the indexes $(\alpha) = (\alpha_1, \dots, \alpha_s)$ where α_i 's are nonnegative integers with $\sum_{j=1}^s \alpha_j = n$ and let $R = k[W_1, \dots, W_s, U]$. Then $T = k[W_1, \dots, W_s, U,$ $\{W^{(\alpha)}/U\}_{\alpha \in \Lambda_n}]$ and T is a k-subalgebra of R[X], where $W^{(\alpha)}$ denotes $W_1^{\alpha_1} \cdots W_s^{\alpha_s}$.

Received June 22, 1978